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Recruitment in SPF
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Peruvian anchoveta Herring
North-Central Peru Scotian Shelf and Bay of Fundy
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The effect of SSB on recruitment cannot be discounted



The stock-recruitment relationship

® anchovy
_| ® sardine

® sprat

® herring

“ menhaden

T
-150

% 46 stocks mainly from the RAM Legacy Stock Assessment Database (25
herrings, 7 sardines, 10 anchovies, 3 sprats, 1 menhaden)

% Series normalized to unit variance for easy comparison across
stocks/regions

* 29 out of 46 stocks had acceptable fits (significant Ricker coefficients
and/or no obvious structure in residuals)
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The Ricker S/R relationship

CV(R/SSB) squared correlation

0.10 0.30 0.50 0.70 0.90 -0. 0.90
Coefficient of density dependence, b first order autocorrelation in R




The Ricker S/R relationship

Coefficient of density dependence, b First order aurocorrelation R

Non- NE NW NE NW NE

upwelling Upwelling Aflantic  Aflantic  Pacific upwelling Upwelling Aflantic  Aflantic  Pacific
Anchovies Herrings Anchovies Herrings
Sardines Sardines

Sprats Sprats



The potential effect of SRP has received limited attention



Reproductive strategies
Herring
Total spawner that ovulates and spawns demersal eggs in a single wave and skip

spawning in some years. Extreme capital breeder (store energy for use later in
reproduction)

Immature Immature

> Developing Developing
(\ Rl pe

Skipping Resting Resting

A

Running

Spent «

Anchovy, sardine, sardinella, sprat

Batch spawner that ovulates and spawns pelagic eggs in discrete intervals (biorhythm)

over a relatively prolonged spawning season. Capital-to-extreme income breeder (feed
during the spawning season)

Capital-income breeding is a conditional strategy: an individual’s genotype is capable of
moving along the capital-income continuum in response to its own physiological
condition and the environment



Female nutritional condition & recruitment
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Figure 3. Reconstruction of therecruitment time-series for the sardine
stock from 1981 to 2008 (circles) using the best environmental Ricker
model [Equation (2); Table 2; black dashed line]; and the best
environmental Ricker model with k [Equation (3); grey dashed line]
with 95% confidence intervals (grey area). The inclusion of k provides a
better fit to the data after 2000.

Sardines are more close to the CAPITAL
BREEDING mode

... to predict Californian sardine recruitment,
Zwolinski and Demer (2014) proposed a
“dual-phase” model based on seasonal
PDO-based indices and a condition factor:



The rate of vitellogenesis and inter-spawning interval
are temperature dependent
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Takasuka et al. 2005



Spawning frequency (S)

139 DEPM applications

Anchovies .
Sardines

BoB: Bay of Biscay SAF: Benguela Current
MED: Mediterranean Sea ARG: Argentine Sea
HUM:  Humboldt Current IBE: Iberia

CAL: Californian Current AUS: Australia




Aegean Sea anchovy DEPM surveys Qe

Mediterranean anchovy is more close to the

120 - INCOME BREEDING mode

100 ] DSF=125945x +3.315 O
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log (mesozooplankton biomass/acoustic anchovy biomass)

Somarakis et al. 2012. Fisheries Research
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Density dependent larval mortality

Mortality of early larvae (2)

o NW Mediterranean

e North Aegean Sea

1.7 2.2

log(eggs m2)

....direct predation, increased attraction of zooplanktivorous nekton



Density dependent habitat use

Fish distribution area ('000 kn?)

Mean anchovy density (4.m?)  Egg distribution area (000 km?)

(¢u'B) Ansuap auipies ueapy

Mean density (g.m?)

2500 5000 7500 10000 12500
Spawning stock biomass (000 1)

2000 . A'DD[! 6.000 Fig. 5. Relationship between anchovy (open circles, solid line) and sardine (closed

Spawning stock biomass (000 t) squares, dotted line) spawning stock biomass, egg distribution area (top panel) and

average packing density (bottom panel, assuming that the egg distribution area

Fig. 4. Relationship between anchovy (open circles, solid line) and sardine (closed reflects the distribution of adult fish, Fig. 2), off Japan (1978-2004). Distribution

squares, dotted line) spawning stock biomass, fish distribution area (top panel) and area computed on the peak spawning month, February for sardine and June for
average packing density (bottom panel), off South Africa (1984-2007). anchovy (from Oozeki et al., 2007).

(@)

MacCall,
1990

Large expansions and contractions of range associated with levels of abundance



Realized vs successful spawning
habitats
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Migration Scheme of Japanese Sardine {Low Stock Level)

Subarctic Domain

Low stock periods:
Transitional Spawning grounds confined within

Domain iInshore areas

Feeding Ground

Spawning
Ground X

T\rjn sition Zone \\

Nursery Groung/ Subarctic
Boundary

Kuroshio ARurosfiio Extension

High stock periods:

Migration Scheme of Japanese Sardine (High Stock Level) |

Feeding Ground Spawning grounds extend across
(High Stock Level) . .
Kuroshio current -> -> increased

+ | spanning [ ] transport to Kuroshio Extension

Ground




Reproductive potential and size selective fishing

O Pelagic trawling

M Purse seine landings

105 115 125 135 145 155 165 175

Total length (mm)

North Aegean Sea —June 1995



Age/size effects

e Recruit spawners often become sexually mature later in
the year or the duration of the spawning period is
shorter in smaller fish

 The spawning fraction (S) and relative batch fecundity
(F/W) may increase with size

S=0.0041" W+ 0.0B48
n=15
ré = 0.54

5,=0025




Age/size effects
Annual fecundity

The few existing estimates of annual fecundity in anchovies and
sardines indicate a strong size-/age- dependency of AF

Northern anchovy

2 3
Year of spawning




Size-selective fishing by its effect on population size
structure may affect the timing of spawning
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Selection for fast growing juveniles or fish produced at the begging of the spawning period



Namibia

Cape Cross

(Il ~cults (low abundance)
I Adults (high abundance)
- - - Isobath 200m

Mostly focused on the survival during the larval stages



Recruitment hypotheses

Critical period

o (Hjort 1914) Stable Ocean
g (Lasker 1975)
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Transport, dispersal & retention processes

Spawning
and
nursery
areas

Dependent on features such as Dependent on specific circulation pathway
land enclosure, gyres, shelf break fronts
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Prey — predator (trophodynamic)
interactions

Good feeding
conditions

Fast growth

Low
cumulative
mortality

High
recruitment




The growth/survival paradigm

The “growth—survival” paradigm has been given much attention
in studies on recruitment dynamics of fish

Stage Bigger is Faster is
duration better better

* Mortality rates are inversely related to size
e Smaller and/or slower-growing larvae are more susceptible to
predation than larger or faster growing larvae




The growth/survival paradigm
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The growth/survival paradigm

Original larvae
Japanese anchovy
Pacific round herring
Japanese jack mackeral
White croaker

Greater amberjack

| Bigger is
E=A better

Japanese sea bass
Skipjack tuna
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Faster is
better

comparisons between original
populations with survivors o s %

10 15 20 25 30 35 40 Standard length (mm)

Age (d)

between original populations
and larvae from predators stomachs



The growth/survival paradigm

e Contradictory evidence
from field, laboratory,
and modeling studies
across systems and taxa

 The size-or growth-
selectivity may occur in
brief periods or
particular stages/years
whereas it depends on
the size and taxon of
predators
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Temperature dependence

Consumption
Respiration
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Temperature

Can control prey availability (levels and timing of planktonic production)



Temperature effects

Consumption

Swimming speed
(levels of activity)

Respiration rate
(metabolism)
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Temperature effects

Anchovy
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Temperature effect on growth

16.2°C vs 22.0°C
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Relationship between recent 3 day mean growth rates and sea
surface temperature for larval anchovy and sardine.

drawn by
Akinori Takasuka



Temperature effects
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Temperature effects

Larval Duration (Days)
Dispersal Distance (km)
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Thermally

Boreal Upwelling &

, , stratified
Temperature effects | ecosystems | mixed (winter)
, (summer)
(herrings) |water columns
waters
Rate of vitellogenesis Veryslow  Moderate Fast
Frequency of spawning Once Low High
Egg & larval size Large Small Smaller
Planktonic durations Long Short Short
Maintenance costs Low High Very high
Time to PNR Long Short Very short
Larval growth & mortality Low High High
Ontogenetic & behavioral Slow, Fast,

Fast
development gradual saltatory



Sheet1

		Temperature effects		Boreal ecosystems (herrings)		Upwelling &  mixed (winter) water columns		Thermally stratified (summer) waters

		Rate of vitellogenesis		Very slow		Moderate		Fast

		Frequency of spawning		Once		Low		High

		Egg & larval size		Large		Small		Smaller

		Planktonic durations		Long		Short		Short

		Maintenance costs		Low		High		Very high

		Time to PNR		Long		Short		Very short

		Larval growth & mortality 		Low		High		High

		Ontogenetic & behavioral development		Slow, gradual		Fast		Fast, saltatory








Temperature effects

Competion of notochord flexion

Ontogenetic change in otolith growth _ o
, Time swimming (%)

high temperature

'. low temperature
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day:night catch

25 35 45 55 65 75 85 95
Length (mm)

Mortality levels may change at specific developmental milestones



What makes a late larva?

EMBRYONIC MORTALITY RATE
EARLY LARVAL
o MORTALITY RATE
B LATE LARVAL
MORTALITY RATE
P r———y d
1x 10— EARLY JUVENWLE
« 4= MORTALITY RATE LATE JUVENILE
- g~=MORTALITY RATE
=
= — \
Z }
ADULT MORTALITY RATE
1x10°
n I | 1 I | ] | I | ]
0 1 2 3 4 5 5] 7 8 9 10 11 12

AGE (mo)
Fic. 4. A diagram of the O-group mortality curves to compare the joint effects of stuge duration and
stage mortality rate on the resulting adult population of northern anchovy central subpopulation.

Smith 1985

Notochord flexion - Development of the caudal fin




What makes a late anchovy larva?

7~ N\
Fish
Ontogeny | |
\—/Head depth | IEer diameter Preanal length . 7

I Anal depth

, Postanal length

Standard length

-0.80
-0.85

-0.90

Change in
functional morphology

PC2

-0.95

-1.00 O Preflexion

® Flexion
e Postflexion

-1.05
-0.7 -0.3 0.1 0.5 0.9 1.3 1.7

) Multivariate allometr
The development of the caudal fin seen as Y

a milestone in fish ontogeny

Somarakis & Nikolioudakis 2010, Journal of Plankton Research



What makes a late anchovy larva?

7~ N\
Fish
Ontogeny

2.5 | 3.5 | 4.5 | 5.5 | 6.5 | 75 | 8.5 | 9.5
Length (mm) Change in
Somarakis et al. 1998. Fish Bull CatChabiIity with
plankton nets

The development of the caudal fin seen as
a milestone in fish ontogeny

Somarakis & Nikolioudakis 2010, Journal of Plankton Research



What makes a late anchovy larva?

7~ N\
Fish
Ontogeny

0.35 1

0.30 4

0.25 1

0.20 +

Increase in
spatial patchiness

Bez's index of aggregation (l,)

0.00

eggs 275 3.75 475 575 675 7.75 8.75 9.75 10.7511.75
Eggs and larval size (mm)

Bez’s index of aggregation

The development of the caudal fin seen as
a milestone in fish ontogeny

Somarakis & Nikolioudakis 2010, Journal of Plankton Research



What makes a late anchovy larva?

7~ N\
Fish
Ontogeny

E. encrasicolus larvas
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In addition to stage-specific features determining
changes in growth and survival levels ...

... in order to disentangle the relative contributions of the different
factors involved in the recruitment process ...

... the FULL LIFE CYCLE has to be adequately considered ...



Hydrodynamic
model

Politikos et al. 2015. Biogeochemical
Progr Oceanogr (N PZ) model

Anchovy IBM Sardine IBM

Rose et al. 2015.
Predator Progr Oceanogr

Fishing fleet

(bioeconomics)



e Allow for straightforward linking of growth,
mortality, movement and spawning processes
to the detailed spatial and temporal scales of
the hydrodynamic/biogeochemical model

e Can be used in multigenerational simulations

in order to investigate (forecast) the effects of
climate and fishing



Princeton Oceanographic model
(POM)

juveniles

HCMR POSEIDON
FORECASTING SYSTEM

1 e, Heloric Contor for Marine Risearch, G.190113, Anaviisos, GREECE
POSEIDON Syatern - hitto:/fww. poseidon. home.gr

day (050500, daily average)
T

BENTHIC MODEL

European Regional Seas Ecosystem Model
(ERSEM 1)



Bioenergetics module
Population module

Egg production module
Movement & migration module
Fishery catch module

POSEIDON operational
atmospheric model
Hyd rOdynamlc Currents, Temperature, Zooplankton

model (POM)
LTL 3D full life cycle
model anchovy IBM

Biogeochemical Organic matter, Nutrients
model (ERSEM I1)



fishing mortality

passive particles

microzooplankton

DVM + horizontal movement
mesozooplankton

DVM + horizontal movement

. micro- + mesozooplankton
DVM + horizontal movement P

mesozooplankton



Model skills — Somatic growth

Length-at-age data
from larval surveys .-

total length (mm)

20 30
age (days)

Weight-at-age data .
from acoustic surveys
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weight (g)

m
m
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Model skills — Distribution & abundance




Model skills — Distribution & abundance
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Mediterranean future climate simulations

SIMULATION SETUP

e Atmospheric Forcing: IPSL-CM4 coupled climate model (Hourdin et al. 2006)

e Periods compared: 1980-2000 & 2080-2100 (A1B IPCC scenario)

* Anchovies Sls along Spanish & French coasts, the Adriatic Sea and the North
Aegean Sea

Mean June anchovy biomass(tonnes’sg mi) / 1980-2000, Total=27 1kt Mean June anchovy biomass(tonnes/sq mi) / 2080-2100, Total=209kt

01 05 1
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Mediterranean future climate simulations hcmr

EAKEG®OE

(2080/1980-1) / AVERAGE=-15%
' 5 5 g A

-3 =2% =15 -10 -5 -2 2 ls] mn 15 25 20

MesoZoo Fractional Change (%) (2080/1980—1) / AVERAGE=—12%
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Mediterranean future climate simulations

Average mesozooplankton@ adults t_mmnIN.-'ma}

= 1930-2000, msan=0.18
= 2080-2100, mean=0.18 {-11%]

Jul Sap Maw

Average temperature@adults (°C)

| =— 1980-2000, mean=15.89
——— 2080-2100, mean=16.84 {+0.95)

Sap Moy Jan

Total anchovy adult biomass (ktons)

i 1930.2000, mean=173

' —2080-2100, mean=129 {-28%:)
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