NSS herring feeding dynamics in the Norwegian Sea

Geir Huse, Webjørn Melle, Aril Slotte, Espen Strand, Thor Klevjer, Peter Wiebe

ICES/PICES symposium: Drivers of Dynamics of Small Pelagic Fish Resources, Victoria, 6-11 March

Introduction

- The Norwegian Sea is an important feeding ground for planktivorous stocks
- Prey availability is a key driver of dynamics of small pelagic fishes
- Objective:

Explore the effect of planktivorous fish feeding on prey dynamics in the Norwegian Sea on large and small spatial scales

Norwegian spring spawning herring:

- •Vast spawning areas along the Norwegian coast
- •Nursery areas in the Barents Sea and fjords
- •Adults perform feeding migrations into the Norwegian Sea

Feeding area Spawning area Overwintering area

Nursery area

Pelagic fish biomass in the Norwegian Sea

Plankton and fish biomass

Plankton and herring biomass

Negative relation between zooplankton and NSS herring biomass

Pelagic fish prey consumption in Nordic Seas

From Bachiller & al. submitted

Reduced length growth of herring, mackerel and blue whiting (age 6)

Reduced length at age in mackerel

Negative correlation between herring and zooplankton in frontal area

From Olsen & al 2007

Trans-Atlantic cruise onboard G.O. Sars, May-June 2013

Towed platform Messor-sensors:

- CTD
- Fluorometer
- OPC
- VPR
- Acoustics (38, 70, 120, 333
 khz)

Speed: 4 knots

Sampling design

- Three crossings of the front towing the MESSOR platform obliquely between 0 and 400 m
- Studying herring distribution, plankton, hydrography
- MOCNESS and pelagic trawl hauls
- Stomach content analysis

Hydrography and fluorescence along transect

B¹ **1 1 1 1 1 1 1 1 1**

D:

Distribution of marine snow from VPR (#m⁻³)

AvBBMarsnow

Distance (km) from start of tow

Density of particle size groups from OPC

Density of size class 3 parti

Density of size class 5 parti

Depth

Distance (km) from start of tow

Distance (km) from start of tow

Density of size class 4 parti

Front

Distance (km) from start of tow

Density of size class 6 parti

Distance (km) from start of tow

Main herring diet items in MOCNESS catches

No change in length or weight of herring across the front

Weight

Length

Herring distribution from acoustics

Diet of herring across the front

Concluding remarks

- The potential prey was found in higher concentrations on the Arctic side than on the Atlantic side of the front
- Herring had two times higher stomach content on the Arctic side of the front
- Frontal areas valuable goal for feeding migration
- Herring feed opportunistic and eat where food is found and "disregards" the DVM rule

Concluding remarks

- The small pelagics in the Norwegian Sea exerts top down control on zooplankton at times of high fish biomass
- Indications for both intraspecific and interspecific competition between the small pelagics
- The study illustrate the valuable insight that can be gained using towed platforms from research vessels routinely in surveys

Thanks for your attention!

