

Mackerel predation on herring larvae during summer feeding in the Norwegian Sea

Erling Kåre Stenevik, Georg Skaret, Eneko Bachiller, Herdis Langøy, Nishat Anjum, Arild Folkvord

Distribution/migration pattern

Pampoulie et al. 2015

Stock history NSSH

Pelagic species in the Norwegian Sea

Atlantic herring (Clupea harengus)

Atlantic mackerel (Scomber scombrus)

Blue whiting (*Micromesistius* poutassou)

Rationale

- Long history of research on NSSH recruitment Hjort (1914)
- Previous focus on match between herring larvae and their prey
- Less focus on predation
- Mackerel expanding and increasing overlap with NSSH larvae
- Observations of mackerel predation from fishermen

Mackel as predator

- Mackerel is an important predator on herring, sandeel and norway pout in the North Sea (Dahhl and Kirkegaard, 1986)
- Mackerel feed on a range of fish and zooplankton in the Norwegian Sea basin (Langøy et al., 2012)
- Pepin et al. (1987) showed positive size selection of mackerel preying on fish larvae

Objective

 Investigate the predation on herring larvae by mackerel during expected spatial and temporal overlap

Mackerel catches in the trawl

Survey

- RV Johan Hjort 30th May 8th June 2013
- Sampling at predefined locations 20 nm apart
- Two coverages
 - CTD
 - Methot Isaac Kid (herring larvae)
 - WP II (plankton)
 - Multpelt 832 pelagic trawl (mackerel)

Sampling grid

Analyses

- Stomach analysis of mackerel
- Spatial overlap index (Williamson, 1993) to assess the ovelap between larvae and mackerel
- GLM to investigate relationship between herring in stomachs and herring larvae abundance
- Otolith analyses to test for size selective predation

Results

Herring larvae

- Herring larvae were obtained in all MIK hauls
- Lower concentrations during the second leg
- Average length was 21.6 mm

Mackerel catches

- Mackerel were caught in all but one haul
- Maximum catch of 2.3 tonnes per nm
- Acoustic recordings suggested showed little mackerel in deeper layers

Mackerel stomach content

- Calanoids (C. finmarchicus) dominated the diet
- Herring larvae were found in 45% of the stomachs
- Maximum of 225 larvae in one gut

Herring larvae in mackerel guts

- Maximum of 225 larvae in one gut
- No spatial relationship
- Incidents of guts containing larvae and quantity of larvae increased at higher larval abundance

Size selective predation?

 Compared larvae from MIK samples to larvae (otoliths) in mackerel stomachs

Results

 Ingested herring larvae estimated to be significantly bigger and older then larvae caught in the MIK

Main findings

- Considerable spatial overlap
- Mackerel predated on herring larvae
- No spatial relationship indicating opportunistic feeding
- Increased abundance of larvae resulted in increased feeding incidents
- Spatial overlap is a useful predictor of the degree of predator—prey interaction between mackerel and herring larvae

– Timing!

Main findings

- Areal projections of mackerel predation
 - Suggest the mackerel in the area would be capable of preying down the larvae in our survey area in the course of 6–7 d.
- Bigger was not better in this case

Acknowledgement

Norges sildesalgslag is thanked for its financial contribution to the field effort

