Incorporating time-varying fishery catchability in assessment models for Atlantic herring (*Clupea harengus*)

Doug Swain

Gulf Fisheries Centre
Fisheries and Oceans Canada
Moncton, NB Canada

Sean Cox

Sch. Of Res & Environmental Mgmt Simon Fraser University Burnaby, BC Canada

Clupea harengus, Atlantic Herring

Catchability, q

the proportion of a fish stock captured by a unit of fishing effort

$$I_t = qN_t$$
 $F_t = qf_t$

- Fishery-independent indices: q often time-invariant
- Fishery- dependent indices (e.g., fishery CPUE): q often timevarying due to
 - Spatial and seasonal variation in q
 - Variation in fishing power (changes in gear, vessels, other technology)
 - Effects of management actions on fishing efficiency
 - Effects of changes in fishing behaviour on fishing efficiency
 - Effects of changes in fish behaviour on fishing efficiency e.g., densitydependent q

Assessment models for Atlantic herring in the southern Gulf of St. Lawrence

Spring Spawners

Single Population

VPA model

- Fishery CPUE
- Acoustic survey indices
- At low abundance

Fall Spawners

Three Populations, assumed unmixed after recruitment

VPA model

- Main index is Fishery CPUE
- At relatively high abundance

Spring Spawner VPA model

Traditional model

time invariant M and q

Severe lack of fit:

- Strong retrospective pattern
- Very poor fit to the Fishery CPUE index (but reasonable fit to the acoustic index)

Non-stationarity in *M* or *q*?

Spring Spawner VPA model

Time-varying fishery q

$$q_{1990} = q \text{Init}, q_{t} = q_{t-1} e^{q \text{Dev}_{t}}$$

 $q \text{Dev}_{t} \sim N(0, sd), sd = 0.1$

Fully-recruited CPUE catchability

Spring Spawner SCA model

Time-varying fishery q

Spring Spawner Models

- time-varying q more pessimistic view of stock status, especially with VPA
- VPA more pessimistic results than SCA

Causes of changes in fishery q of Spring Spawners?

Decrease following management measures to reduce fishing efficiency.

Density-dependent: *q* increases as SSB declines below 60,000 t.

Interesting if true – simulation tests of time-varying *q* models

Fall Spawner VPA model

Modelled as 3 populations (which may mix at recruitment)

Fall Spawner VPA model – fit to the fishery cpue index

Constant q

Time-varying q

Fall Spawner VPA model – time-varying fishery q

Variation in *q* is mostly density-independent

May be related to changes in the behaviour of fish or fish harvesters:

- Harvesters in the South (but not in the North) indicate important changes in their fishing behaviour in recent years
- Grey seal abundance has been increasing exponentially and harvesters report changes in herring behaviour in response to the presence of seals

Fall Spawners – effect of time-varying q on estimates

Conclusions

- Evidence of time-varying q for fishery cpue indices of both springand fall-spawning stocks of herring
- Apparent causes differed between stocks
- Strong evidence for density-dependent q for the depleted spring spawning stock
- Failure to account for time-varying q can lead to incorrect conclusions on stock status (e.g., spring VPA)
- Based on simulation tests, both SCA and VPA models were able to identify time trends in q in most instances
- VPA and SCA estimated similar trends in population biomass, though the SCA estimates were more optimistic in recent years.