Drivers of dynamics of small pelagic fish resources
International Symposium, Victoria (Canada), March 6-11, 2017
Session 5: Future challenges for ecosystem-based management of highly variable fish populations

Managing the Bay of Biscay anchovy: fishery requirements vs. sustainability given recruitment uncertainty

Uriarte, A., <u>Sánchez, S.</u>, Ibaibarriaga, L., Abaunza, P., Andrés, M., Duhamel, E., Guyader, O., Lehuta, S., Jardim, E., Leonardi, S., Prellezo, R., and Roel, B. @AZTI 3/13/2017

1- Background

1. The anchovy

- Small pelagic species
- Short-lived (3-5 years)
- Fast turn-over
- Sustained by age 1 recruits
- Mature at age 1
- Spawning in spring
- High and variable M (M1<M2)
- Major predators on juveniles and adults are: tunidae, hake, monkfish, and demersal fishes, big mackerel, horse mackerel and jack mackerel

2. The fishery

Spanish fleet:

purse seines (~150 licences)
Mainly in spring

French fleet:

pelagic trawlers (~50 vessels) + purse seines (~27, but mainly on sardine) Mainly in Second half of the year

Population and catches sustained by recruitment at age 1

2. Historical development

ICES Provision of advice 2001-2004

- Catch advice provided for Y+1 with unknown recruits at age 1 (~60% of catches unknown)
- ICES precautionary approach (PA) strategy: two phase approach for advice
 - I. Initial TAC advice based on poor recruit assumption to start the year (January)
 - II. Revised TAC advice (in June) after recruit estimates from May surveys
- Caveats: most of the catches (60%) in 1st half of the year governed under PA
 - Unbalanced PA affection by countries (Spain 87%; France 33% during 1st half of the year)
 - PA approach → precautionary but suboptimal exploitation strategy due to the unknown recruits

The advice was not followed / Fixed TAC around 30 to 33 000 t

2. Historical development of the fishery azti Transforming Science into Business

The fishery crashed in 2005 due to successive failures of recruitments leading the stock below B_{lim} (21 000 t)

2- 1st management plan: Management under recruitment uncertainty

3. First management plan: the process

- 2006/2007 First initiatives through SWW. RAC
 - Sustainability of the resource / sustainability of the fleets / cohabitation of fleets
- 2008: The European Commission launched the process

EC set objectives:

- to ensure the exploitation of the stock at high yields consistent with maximum sustainable yield (MSY);
- to guarantee the stability of the fishery, as far as possible, and with a low risk of stock collapse.

<u>Basis</u>: STECF works in 2008 with scientists of AZTI, IEO, IFREMER, CEFAS, universities,...

 Iterative consultation process with managers and stakeholders 2008/2009

8

3. First management plan approach:

close coupling of monitoring + advice with management

New management calendar: Set TACs July (Y) - June (Y+1). according to the biomass levels estimates from May surveys year y.

Aim of management plan: Develop Harvest Control Rules (robust to uncertainties) to set max TACs keeping risk low [P(SSB(Y+1) < Blim) < 0.05]

Surveyed estimates (y) accounts for about 67% managed catches and 10-40% managed population (y+1)

Major sources of uncertainties: i) assessment uncertainties of biomass in year y

- ii) Recruitment uncertainty (age 1 in year y+1, 1st half) \rightarrow SSB(y+1)
- iii) Others: process errors and model miss-specification

3. First management plan:

formulation of Harvest Control Rules & stakeholders' input

Rule A:

Harvesting a constant fraction of B in excess of B_{lim}

$$TAC_{y} = \begin{cases} 0 & \text{if } S\hat{S}B_{y-1} \leq B_{\lim} \\ \gamma(S\hat{S}B_{y-1} - B_{\lim}) & \text{if } S\hat{S}B_{y-1} > B_{\lim} \end{cases}$$

Stakeholders' variants: TAC constraints:

With and without a maximum TAC (33 000 t)
With and without a minimum TAC (7 000 t)
(stakeholders' minimum economic viable TAC
if TAC<TAC_{min} then close the fishery)

Rule B:

Harvesting a constant fraction of SSB (only if B> B_{na})

$$TAC_{y} = \begin{cases} 0 & \text{if } S\hat{S}B_{y-1} \leq B_{lim} \\ \\ \gamma \frac{(S\hat{S}B_{y-1} - B_{lim})}{(B_{pa} - B_{lim})} S\hat{S}B_{y-1} & \text{if } B_{lim} < S\hat{S}B_{y-1} < B_{pa} \\ \\ \gamma S\hat{S}B_{y-1} & \text{if } S\hat{S}B_{y-1} \geq B_{pa} \end{cases}$$

3. First management plan: evaluations

- Scientific work simulations:
 - following MSE approach
 - Using FLBEIA framework (http://flbeia.azti.es/)

- Work carried out within STECF:
 - STECF 2008. 29th Plenary Meeting Report of the Scientific, Technical and Economic Committee for Fisheries (PLEN-08-03). JRC, scientific and technical report, ISBN 978-92-79-10940-9.
 - STECF 2009. 30th Plenary Meeting Report of the Scientific, Technical and Economic Committee for Fisheries (PLEN-09-01). JRC, scientific and technical report, ISBN 978-92-79-12424-2.

3. First management plan: evaluations

- Rules A & B were tested over a <u>10 years projections</u>
 - For a range of harvest rates from 0 to 1 (0.1 steps)
 - With and without TAC max at 33 000 t
 - With and without TAC min at 7 000 t (below which the fishery is closed)
 - For different quota allocations between Spain and France of the TAC: from the 50:50 recent historical ratio) to 90:10 (official) and other variants
- Evaluation of rules A & B for the following <u>performance indicators</u>
 - Sustainability of the population: mean SSB, risk $[P(SSB(Y+1) < B_{lim}) < 0.05],...$
 - Fishery performance: mean catch, variability of catch (SD), probability of closures,...
 - Socio-economic performance: TAC value, gross and net revenue, wage (as social indicator),...
- Testing robustness to <u>uncertainties</u> in
 - Population dynamics models: two stage or full age structured models
 - Stock recruitment relationships: Ricker or Quadratic Hockey stick SRR
 - Persistent low recruitment scenario

3. Evaluation of HCRs for TAC constrains a Zti Transforming Science into Rusiness

Case Rule B: harvesting a constant proportion biomass (Ricker)

TAC_{max}

- reduces mean catch
- ii) stabilizes catches
- iii) reduce risks

TAC_{min}

- i) increases the probability of closure
- ii) very little reduction of catches and increases variability
- iii) does not alter the risks

TACmax=NA, TACmin=7000 t; TACmax=33000 t, TACmin=7000 t

TACmax=NA, TACmin=NA

; TACmax=33000 t , TACmin=NA

Similar effects of TAC_{max} and TAC_{min} on Rule A

3. Selection of a final HCR

min $(0.3 \cdot \widehat{SSB}_{\nu-1}, 33000)$,

- EC decision: Rule B with TAC_{max} 33 000 t & harvest rate 0.3 (risk~0.05/0.06)
 - Fishermen preferred harvest rate 0.4 (but the risk was about 0.09)

si $24000 \le \widehat{SSB}_{y-1} \le 33000$ si $\widehat{SSB}_{y-1} \ge 33000$

A variant (rule E) selected by fishermen with a step TAC_{min} at 7 000 t was finally adopted (of equal performance)

Fishery closure risk: 0.11

3- 2nd management plan: Management informed on recruitment

4. Second management plan:

Reasons for the review

- Review (in 2014 requested after 4 years of application)
- ICES benchmark (ICES CM 2013/ACOM:46).
 - Changes in population dynamics (Natural Mortality) and in Assessment Model
 - Revision of inputs (DEPM revision) and...
- Inclusion of an acoustic survey on juveniles (age 0) in autumn: JUVENA

4. Second Management Plan:

Coupling monitoring + advice to management

New Management Calendar:

January – December (Y+1). according to the adult and recruits levels estimates in May and autumn surveys of year y.

Aim of Management Plan:

Develop Harvest Control Rules (robust to uncertainties) to set max TACs keeping risk low [P(SSB(Y+1) < B_{lim}) < 0.05]

Surveyed estimates (y) accounts for 98% managed catches & 100 % managed population (Y+1)

Sources of Biological risks:

- i) survey uncertainties of biomass and recruits_0 in year y
- ii) Others: Process errors and model miss specification

4- Re-evaluation of the LTMP: STECF 2013/14

Several alternative HCR were evaluated (avoiding discontinuities) for two levels of TAC_{max} and management calendar, continuous rules, setting TACs as a linear function of the expected SSB in the management year Y+1.

Work carried out within STECF:

- STECF 2013. Advice on the Harvest Control Rule and Evaluation of the Anchovy Plan COM(2009) 399 Final (STECF-13-24).
 Publications Office of the European Union, Luxembourg, EUR 26326 EN, JRC 86109, 71 pp.
- STECF 2014. Evaluation/scoping of Management plans Data analysis for support of the impact assessment for the management plan of Bay of Biscay anchovy (COM(2009)399 final). (STECF-14-05). Publications Office of the European Union, Luxembourg, EUR 26611 EN, JRC 89792, 128 pp.

4- Re-evaluation of the LTMP: STECF 2013/14

Conclusions:

- Reducing TAC_{max} from 33 000 t to 25 000 t:
 - reduces risks in 1-2%
 - provides more stability in catches (around 15%)
 - but reduces expected catches between 2000 y 4000 t by year (the higher the exploitation rate, the higher the reduction)
- Informed management on recruitment with a TAC January to December:
 - reduces the risks of falling below B_{lim} around 40%, with similar probabilities of fishery closures
 - provides slightly higher mean catches (~5%)
 - and more stability in the catches (~12%)

4- Management in 2016

Rule adopted in 2016

• New rule (G3) $TAC = \begin{cases} 0 & \text{si } \widehat{SSB}_{y+1} \le 24000 \\ -2600 + 0.40 \cdot \widehat{SSB}_{y+1} & \text{si } 24000 < \widehat{SSB}_{y+1} \le 89000 \\ 33000 & \text{si } \widehat{SSB}_{y+1} > 89000 \end{cases}$

Both rules resulted in the same risk levels

4- Conclusion

- 1. Current status of the fishery & stock
- 2. The consultative process and stakeholder inputs

5. Current state: fishery

5. Current state of stock

4. Discussion: final considerations

For a short living species

- Recruitment uncertainty is the key element affecting management
- Direct monitoring of adult biomass and juveniles (recruits) are key inputs for reducing uncertainty in assessment and advice
- Variability is unavoidable, but some stability may arise from moderate exploitation and with the concept of TAC_{max}
- Both biological and economic assessment of HCR are relevant
- Consultation with stakeholders iteratively throughout the process
 - Benefits the scientific work in better definition of HCRs and of performance indicators by addressing matters of concern to stakeholders
 - Encourages compliance of the fishermen with the LTMP
- No direct ecosystem consideration was assessed while testing HCRs
 - TAC_{max} additionally allows diverging surplus production to other populations (i.e. predators)

©AZTI 3/13/2017

25

Thank you for your attention!

www.azti.es | www.alimentatec.com | www.itsasnet.com T. +34 94 657 40 00 | info@azti.es

Txatxarramendi ugartea z/g 48395 Sukarrieta, Bizkaia (SPAIN) Herrera Kaia, Portualdea z/g 20110 Pasaia, Gipuzkoa (SPAIN) Astondo Bidea, Edificio 609 Parque Tecnológico de Bizkaia 48160 Derio, Bizkaia (SPAIN)