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Outline

Session 3 Understanding Population- and Ecosystem-level
Shifts: From Seasonal Timing to Tipping Points

> Overview of tipping points
> Ecological thresholds

> Ecosystem state indicators
> Future directions




What is a tipping point?

‘When incremental changes in
human use or environmental
conditions result in large, and
sometimes abrupt, changes in
ecosystem structure, function,
and often, benefits to people’

W i ‘ Ocean Tipping Points project |

oceantippingpoints.org

WHAT'S A
TIBPING POINT?




Increasing attention on tipping points

The quiet crossing of .,
‘ocean tipping points ®

Heinze et al. PNAS 2021
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Increasing attention on tipping points
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Climate change: Six tipping points
‘likely’ to be crossed

€he New York Eimes

Failure to Slow Warming Will Set Off
Climate ‘Tipping Points,’ Scientists Say




Increasing attention on tipping points

Climate Change Impacts ipcc
in the United States InTercoveRnmMEnTar paNeL on Climate change
el Climate Change 2022
, Impacts, Adaptation and Vulnerability

Summary for Policymakers

U.S. National Climate Assessment
U.S. Globel Change Research Program
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Tipping points can occur in multiple forms

Phase shift
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No hysteresis
Environmental driver ——>
Driver exhibits threshold Relationship is
behavior that is tracked nonlinear
by the ecosystem
response

Selkoe et al. Eco. Health and Sustain. 2015



Tipping points can occur in multiple forms

Phase shift Alternative stable states
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scientific reports
Tipping point realized in cod fishery

» Abrupt change in population ol a | | |
variables (SSB, R, R/SSB) ik I s e e el I s

» Nonstationary relationships
among variables and external
drivers (F, SST)

» Recently developed alternative
stable of low cod productivity
(F, SST)

Spawning Stock Biomass (1000 tonnes)

» Beyond a tipping point and | Year
unlikely to recover

Mollmann et al. Scientific Reports 2021



a frontiers | Frontiers in Marine Science
Irreversibility of regime
shifts in the North Sea

b Dinoflagellates
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Climatic Change

Indications of a climate effect

fisheries

on Mediterranean
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An Integrated Traits Resilience Assessment of Mediterranean
fisheries landings

BRITISH

Journal of Animal Ecology E ECOLOGICAL

SOCIETY

PC2

-2.5 -2 -15 -1 -0.5 0 0.5 1 15 2 2.5
PCl
(-) PC1 loadings (+) PC1 loadings
Opt. temperature 15-20°C Opt. temperature 25-30°C
Spawning period winter Spawning period summer

Longevity > 20 years ‘ Longevity 5-9 years
Max. length > 1m Max. length 20-50 cm

Diet piscivore Diet planktivore _ .
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An Integrated Traits Resilience Assessment of Mediterranean
fisheries landings

ECOLDGICAL
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Outline

Can we anticipate tipping points to better mitigate and

adapt to the potential impacts

> Overview of tipping points
> Ecological thresholds

> Ecosystem state indicators
> Future directions

Learnz.org | Tipping points



Thresholds to help inform management strategies
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Evidence of ecological thresholds
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Threshold management works. More explicit use of thresholds in
management is strongly associated with better environmental outcomes

Kelly et al. 2014 Phil. Trans. Roy. Soc. B

Audubon Institute



How to increase uptake of thresholds in management?
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How to increase uptake of thresholds in management?

Simulation studies to demonstrate how incorporating thresholds
in management applications could improve knowledge of risk and
uncertainty

Sensitivity analyses of threshold models to non-stationary
dynamics, missing environmental info, observation error, etc.
Where are thresholds robust or not?

Identifying underlying mechanisms through which thresholds
may or may not arise can help inform management policies

Better communication and collaboration around developlng
- management on-ram f in orma jon on:
s ent.ongl .’ n
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Can we anticipate tipping points to better mitigate and

adapt to the potential impacts

> Overview of tipping points
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Marine heatwaves in northeast Pacific

Sea surface temperature anomaly
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WIll biological responses to warm ocean
conditions result in ecosystem shift?

Crab and clam Species Record low returns / Caspian terns
fisheries closures range extensions abundance / poor abandon colony in
due to domoic acid | invasions condition mid-season




Ecosystem state index

- Evaluate changes in mean community state in response
to climate perturbations

 Distinguish normal variability from changes signaling a
major shift (i.e. reference points)

« Early detection of abrupt ecosystem-level changes




Bayesian Dynamic Factor Analysis
Can we identify latent 'trends’ that are useful as indices?

- Large changes in trends values indicate large changes in the
underlying community of shared trends

- Handles missing values in time series
- ldentify states/regimes in estimated shared trends

- Create one year ahead forecasts

bayesDFA R package on CRAN / Github.
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Objectives

«  Summarize environmental and biological variability in the

southern and central regions of the CCE, evidence of
regime shift?

|dentify relationships between community variability and
climate variables

Test our ability to create one-year ahead forecasts




South/Central California Current Ecosystem
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Data

 Short lag in response (0-1 years)
* 15+ year time series

« Sampled at least annually
 Short processing time



South/Central California Current Ecosystem
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Climate data (1980-2018)
« SST

» Sea surface height

* Isothermal layer depth
 Brunt-Vaisala frequency
(stratification)

« CUTI (Upwelling)

« BEUTI (Nitrate flux)



South/Central California Current Ecosystem

120°W
1

A islands . Biology data
.o P e Ichthyoplankton (1951-2016)
% 100 km region « Juvenile rockfish, groundfish,
CCS regions

squid and krill (1990-2016)
» Seabird productivity (1971-2016)

» Sea lion pup growth, count,
weight (1997-2016)
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Climate trend captured cooling :
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Presence of two states, warmer versus cooler conditions
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Strong deviations in community
trend around the time of El Nino
events, and MHW

MHW

El Nino
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Evidence for regime shift in 1960s, not after MHW
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One year ahead forecasts of ecosystem state
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Forecasts of community trend for ten additional years
indicate some skill for many of the years tested
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Future Directions

« Evaluate multiple covariates at the same time

* Apply analysis to other NE Pacific ecosystems

» Tailor to particular species, improve predictions of
recruitment /survival?

 Evidence of nonstationary relationships in California Current
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Concluding remarks

> Tipping points science to mitigate and adapt to impacts,
especially in the face of climate change

> Ecological thresholds, even if somewhat rare, are
worthwhile to detect due to risks of missing them

> Tools to track and forecast ecosystem shifts can help
inform better, more rapid management decisions

> Nonstatlonary relatlonshlps challenge our ablllty to
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