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Scope of the work

Improve the knowledge about population dynamics of main
fishing resources

Restoration of marine biodiversity

Spatio-temporal analysis of abundance indexes

2/25 Daniela Silva CMAT, University of Minho



Motivating data

PELAGO surveys

Estimate the abundance of sardine
inhabiting the Portuguese shelf.

Time: 20 annual surveys
fromm 2000 to 2020,
except 2012.
Study region: Portuguese continen-
tal coast and Gulf of
Cadiz.
«+0 * 1090 * 300-1000

Interest: Biomass index (NASC, * 0-10 * 90-300 - 1000-39700
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Environmental data
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Problem and Objective

spatial
autocorrelation

e Non-consideration of important environmental
conditions.

e Intrinsic factors: competition, dispersal, aggregation,
etc.

Geostatistics
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Problem and Objective
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Problem and Objective

North Southwest
1500
1000
500
0
Gulf of Cadiz
1500
1000
i
)
)
\
v ' /
)
2 ;
Dt memee B [ %
2000 2005 2010 2015 2020 2000 2005 2010 2015 2020
Survey

7/25

Daniela Silva

CMAT, University of Minho



Problem and Objective

Main aims

Estimate the spatio-temporal distribution of sardine in
western and southern lberian waters.

Understand sardine dynamics over time and space.
Identify the main drivers of sardine spatial dynamics.

Complex spatio-temporal dynamics.
Excess of zeros.

Difference between occurrence process and biomass
process under occurrence.

Relationship between response and environmental
conditions with a time lag.
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Two-part model

Hierarchical model

Series of levels linked by probability functions.

Y,; - Biomass process at location s and time ¢
Z; - Occurrence sub-process

Distribution of biomass index

Yse] = [Zst] Y| (Zs = 1)]
_ 1 -y, Vst =0
- Tlst [Ystl(Zst = 1)] , Y >0

such that:

Zs: ~ Bernoulli(mg)
Yot|(Zgt = 1) ~ Gamma(ag, bg)
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Two-part model

Two-part model can be defined by:

p
log(psii) = @+ Y £(K (Xjarir ;1) + +

=

p/
logit(mai) =& + ) £/ (K(Xjgi 0, )+ +k
j=1

time lag ¢ + 1 in days from i*" day of the survey in year
smoother function f of the ;' covariate X/,
Wets
v: and y;.
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Spatio-temporal structure with AR(1) process

W = 6Ws(t—1) + &t

Q5 <1

@ & isis a zero-mean GF with spatio-temporal covariance:

0 if t#]
Covteunéu) = | A
such that Cov (&, &,) is given by
with partial variance o2 and range ¢.
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Kernel application K(., ., .)

l
K(Xjsti,c,l) = Z We—gXjst(i-(c-q))
qg=-1

o =L ox _4q>
c-q = BR8P |7 2m2 /\
® Xjst(i-(c-q)) - 1" covariate f o
observed inday i - (¢ - q) werd e
of year ¢ [ \
e On the i"" day, the [
maximum effect of X; /
occurs for lag ¢ P : R

cH ct2 ct1 ¢ c1 c2 cl

time lag info
the past (days)
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Examples of Kernel application

Presence/absence modelling:

p/
logit(mar) = a1+ ) £(K(Xjir 0, 1)) + 7, + KWy
Jj=1

@ If the biomass is only affected by chlorophyll on the same day, then
K(CHLsti,, 0, 0) =CHLg;

@ If the biomass is affected by chlorophyll 14 days ago, then
K(CHLg;i,14,0) = CHLg (;-14)

® If the biomass is affected by chlorophyll 14 days earlier
and 2 days before and after, then
K(CHLgi,14,2) = wigCHLg;(;—16) + W15CH Ly (;_15) +
W14CH Ly (;—14) + W13CH Lg;(i-13) + W12CH Lyt (;—12)
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Bayesian perspective

¢ |t allows to incorporate prior information.

¢ Information and uncertainty about all the unknown can
be better (and easily) expressed in terms of probability
distributions.

e It might more easily handle with inference and
prediction (Banerjee, Carlin, and Gelfand 2004).

INLA approach was used to approximating the posterior
marginals of the latent GF (Rue, Martino, and Chopin 2009).

https://www.r-inla.org/
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https://www.r-inla.org/

Some highlights

* Various combinations of ¢ and / were tested.

e Data from the west and south Iberian coasts are studied
separately.

e Spatial predictions over the entire study region were
obtained for a "representative day" of each survey for
the total 21 years.
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Results: Environmental effects for the presence

Effects on west coast Effects on south coast
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Results: Environmental effects for the biomass

Effects on west coast

Effects on south coast
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Results: predicted occurrence
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Results: predicted biomass
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Results: Occupancy areas
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Results: Favourable and unfavourable zones

Persistent rare (unfavourable) and preferred (favourable)

zones
2000-2007 2013-2020
VT VT
7 o o
‘? v Viana do Castelo ~ a) /“Viana do Castelo
i | 7
R porto
i
| |
Q};ﬁ Aveiro [
#a,‘ ’
.+ ~J% #Figueira da Foz -
-y )
Frenicns
) Unfavorable
- Favorable
I /- : Other
) /,.ﬁemba\ {

21/25 Daniela Silva CMAT, University of Minho



On going and Future work

On going work

e Apply this methodology to the

* Model the spatio-temporal distribution of sardine from
data obtained frorn commercial fisheries, taking into
account

o fishery-dependent and
fishery-independent data.
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