

The impact of natural mortality on reference points and management strategies of forage fish populations

Nis S Jacobsen¹

1

DTU Aqua, Technical University of Denmark Twitter: @nissandjac

Email nsja@aqua.dtu.dk

Introduction – Forage fish and natural mortality

How can we estimate natural mortality

- Multispecies models
- In integrated assessments as either a random walk, or a constant variable
- Life history parameters
- Guessing?
- But mostly we do not.....

Issues

- Changes in natural mortality can't be observed
- In models the signal is hard to distinguish from recruitment, selectivity and fishing mortality
- Data doesn't support estimation of time varying parameters
- Sufficient data is rarely available to perform full integrated age based models
- It's uncertain what changes in time varying mortality does to management of exploited stocks

Methods - management strategy evaluation

historical period

OM – Age based model

- Recruitment (stochastic)
- Mortality (four scenarios)

Data generation

- Catch
- Survey

x years

Into the future

Harvest control rule

Total allowable catch

EM – surplus production state space model

- Fishing mortality
- Stock status
- Reference points

Research questions

How does a surplus production model of forage fish perform, if natural mortality is changing over time?

Which harvest control rule performs best for a forage fish with time varying natural mortality?

What happens if M is misspecified?

Sometimes the variation goes elsewhere when the operating model has time varying mortality

0.5

Model

σ_R: Estimated recruitment variability

σ_M: Estimated natural mortality variability

Jacobsen et al 2018

Model estimations

A: Time varying mortality

B: Deterministic

C: Recruitment deviations

D: Recruitment deviations and time varying mortality

Operating model

- Age based model
- Natural mortality assumed to be constant among ages
- Life histories determined by forage fish in the RAM stock assessment database (supplemented by FishLife) (n = 20)
- Recruitment is autocorrelated, and size of deviations depend on life history parameters

Natural mortality scenarios

Four natural mortality scenarios

Estimation model

- Pella Tomlinson surplus-production model
- State space version that estimates interannual variability as random effects (process error)
- The model uses an annual survey (with uncertainty σ^2_S) and annual catch (with uncertainty σ^2_C) as input data
- Estimates B_t, C_t as random effects
- r K, q (survey catchability), and $\sigma^2_B \sigma^2_{S,} \sigma^2_C$ as fixed effects

$$SP_{t+1} = \left(m\gamma \left(\frac{B_t}{K} \right) - m\gamma \left(\frac{B_t}{K} \right)^n \right) \epsilon_t$$

$$\gamma = \frac{n^{\frac{n}{n-1}}}{n-1} \qquad m = \frac{rK}{n^{\frac{n}{n-1}}}$$

$$\epsilon_t \sim N(0, \sigma_B^2)$$

Harvest control rules

- Fmsy
- CFP
- Bescape

Results – How well a state space surplus production model estimate biomass?

Which harvest control rule performs best?

Which harvest control rule performs best?

Influence of life history parameters

Conclusions

- Changes in natural mortality does not significantly change how well biomass is estimated due to the inherent high variability
- Directional natural mortality can lead to poor estimation of states
- Life history parameters impacts estimation
- Fmsy seemed to perform best in these scenarios in comparison with the other control rules

Perspectives and lessons learned

- Contrast in historical data is important to gauge changes in productivity
- Time varying productivity can be informative but hard to estimate
- Is Fmsy or MSY really attainable long term reference points if they are changing over time?
- Empirical harvest control rules may provide better options for short lived species such as forage fish
- State space models are efficient at identifying interannual variability regardless of the source

Photo: Getty images

Thank you

CARL§BERGFONDET

Nis Sand Jacobsen DTU Aqua, Technical University of Denmark

Email: nsja@aqua.dtu.dk
Twitter: @nissandjac