

Macarena Díaz Astudillo, Ramiro Riquelme, Gonzalo Saldías, & Kim Bernard. 7th Zooplankton Production Symposium.

The Humboldt Current System

- Highly productive eastern boundary upwelling system (EBUS)
- Highest mono-specific fishery production wordlwide (Peruvian anchovy)
- Quasi-permanent oxygen minimum zone (OMZ)

Engraulis ringens

Riquelme-Bugueño et al. 2020

Paulmier et al. 2006

The role of krill in the HCS

- Significant contribution to total zooplankton biomass
- They are a key component of the food webs
- Many fisheries rely on krill

Main drivers of krill in EBUS

• Upwelling centers

Riquelme-Bugueño et al. 2012, HCS

• Ekman transport

Santora et al. 2011, California Current System

Dorman et al. 2015, CCS Temporal and spatial correlations with predators

Questions:

Up to this point, little was known about the composition and dynamics of krill communities in the highly productive, permanente-upwelling areas of the HCS (north of 30°S).

- How is the krill community of the permanent-upwelling area of the HCS composed?
- What are the main drivers of species distribution and abundance?

Study design

- Study area: northern Chile, permanent upwelling
- 16 bianual cruises
- Night zooplankton samples (100 m deep) with Bongo nets
- CTD-O casts
- Anchovy acoustic biomass (NASC) from EK-60 echosounder
- Satellite temperature (SST), Chl-a (SSC) and winds

Environmental setting

Dissolved oxygen not shown because of high correlation with the depth of the OMZ

Environmental setting

Diversity and community composition

Euphausia mucronata 70%

Euphausia eximia 13%

Stylocheiron affine 10%

Hansarsia spp. 3%

Diversity and community composition

Variable	SS	Pseudo-F	p-value	% EVSM	r dbRDA 1	r dbRDA 2	r dbRDA 3
dOMZ	120420	80	0.001	25.7	-0.82	-0.02	0.11
MeanTemp	64650	37	0.001	13.8	-0.35	0.24	0.25
Depth	55905	31.4	0.001	11.9	-0.26	0.02	-0.02
SSC	38044	20.5	0.001	8.1	0.31	-0.24	0.28
ET	9561	4.8	0.006	2	-0.14	-0.63	0.15
MeanSal	8719	4.4	0.002	1.9	0.14	0.48	0.75
MEI	4618	2.3	0.061	<1	0.01	-0.51	0.51

SS= sum of squares

% EVSM= porcentage of explained variance in single-term linear model

r = multiple partial correlation coefficient

Species-specific drivers – HGAM models

- The best and final model included 5 predictors
- The variables with higher explanatory power were the dOMZ and temperature

Model	Terms	Dev. Expl. (%)	AIC	ΔAIC
	Lat/Lon, Sal*, Temp, dOMZ, E _T , SSC*,			
Full model	Anchovy	56	3316.65	7.25
Spatial	Lat/Lon	39.7	3474.53	165.13
dOMZ	dOMZ	42.4	3391.97	82.57
Temp	Temp	29.3	3350.00	40.60
Final model	Lat/Lon, Temp, dOMZ, E _τ , Anchovy	55.3	3309.40	0.00

 The spatial term was significant for all taxa

Species-specific drivers – HGAM models

 The effects of the dOMZ and temperature on E. mucronata were opposed as to the other taxa

• The Ekman transport showed a non-linear effect on *S*. *affine* abundances

Species-specific drivers – HGAM models

- Negative non-linear effect on E. mucronata
- Shared habitat (as previously proposed by Peruvian studies)
- Local top-down effect?

Conclusions

- 1. The cross-shore gradients in temperature and dissolved oxygen caused by upwelling dynamics represent the main mode of environmental variability in this ecosystem.
- This mode agrees with the spatial pattern observed in community diversity and is the main driver of community composition.
- 2. E. mucronata, the endemic and numerically dominant species, was the only one with higher modelled and observed abundances under upwelling conditions.
- The lack of an effect of Chl-a is a novel finding in this ecosystem and could suggest that krill communities in this area are not limited by food.
- 4. Krill interactions with the Peruvian anchovy should be further investigated to prove or discard local top-down control.

Acknowledgements

- Symposium organization
- COPAS Coastal Research Center
- Post-doctoral ANID Grant N°3230183

The team

Dr. Gonzalo Saldías Physical Oceanography UBB / COPAS Coastal

Dr. Ramiro Riquelme Zooplankton Ecology UdeC

Dr. Kim Bernard Krill ecology/Modelling OSU

Dr. Macarena Díaz Astudillo Krill enthusiast;) UBB / COPAS Coastal

Thank you for your attention.

macarenapaz.da@gmail.com