

Deana Crouser - Lynker Technologies in support of Alaska Fisheries Science Center, NMFS, NOAA

Jan Ohlberger - School of Aquatic and Fishery Sciences, University of Washington; Washington Department of Fish and Wildlife

Grant Woodard - School of Aquatic and Fishery Sciences, University of Washington

David Kimmel - Resource Assessment and Conservation Engineering Division, Alaska Fisheries Science Center, NMFS, NOAA

Fulcrum of the Food Web

- Connect primary production to upper trophic levels
- Interact with fish at critical phase of their life history
 - Vast majority of zooplankton biomass
- Critical dietary component for commercially important fish
- Not directly harvested; reflective of environmental changes

Ecological Responses to Warming

NOAA Extended, Reconstructed Sea Surface Temperature Plot

HYPOTHESIS 1:

There has been an overall decrease in the mean INDIVIDUAL size of copepods

HYPOTHESIS 2:

There has been an overall decrease in mean size for each <u>POPULATION</u> of copepod

HYPOTHESIS 3:

There is an overall trend in the mean copepod body size OVER TIME

NOAA's Pacific Marine Environmental Laboratory M2 Mooring

Collecting Data from Archived Samples Times Series Range 2003 - 2018

Collecting Data from Archived Samples Times Series Range 2003 - 2018

HYPOTHESIS 1:

There has been an overall decrease in the mean INDIVIDUAL size of copepods

Mean Size During Spring

Calanus marshallae

Mean Size During Spring

Metridia pacifica

HYPOTHESIS 2:

There has been an overall decrease in mean size for each <u>POPULATION</u> of copepod

Mean Spring Population Size: Large Copepods

Mean Spring Population Size: Small Copepods

HYPOTHESIS 3:

There is an overall trend in the mean copepod body size OVER TIME

HYPOTHESIS 1:

There has been a decrease in the mean INDIVIDUAL size of copepods

HYPOTHESIS 2:

There has been a decrease in the mean size for each POPULATION of copepod

HYPOTHESIS 3:

Calanus marshallae, smaller during warm periods

Metridia pacifica, lack difference in size

HYPOTHESIS 2:

There has been a decrease in the mean size for each POPULATION of copepod

HYPOTHESIS 3:

- > Supported for large copepod, *Calanus marshallae*
- > Rejected for small copepod, *Metridia pacifica*

HYPOTHESIS 1:

There has been a decrease in the mean INDIVIDUAL size of copepods

HYPOTHESIS 2:

There has been a decrease in the mean size for each POPULATION of copepod

HYPOTHESIS 3:

HYPOTHESIS 1:

There has been a decrease in the mean INDIVIDUAL size of copepods

Multi-species classes showed significance

No significance expected for Metridia, and unexpected for N. cristatus

HYPOTHESIS 3:

- > Supported for Calanus marshallae
- > Rejected for Neocalanus cristatus & Metridia pacifica

HYPOTHESIS 1:

There has been a decrease in the mean INDIVIDUAL size of copepods

HYPOTHESIS 2:

There has been a decrease in the mean size for each POPULATION of copepod

HYPOTHESIS 3:

HYPOTHESIS 1:

There has been a decrease in the mean INDIVIDUAL size of copepods

HYPOTHESIS 2:

There has been a decrease in the mean size for each POPULATION of copepod

Ecosystem response to warming

Need to regress against SST and remove natural variability

> The potential of a trend...

IMPLICATIONS

Calanus marshalle: Average Dry Weight

- Average mass
 DECREASES
 during WARM
 periods
- Later C5 stage most effected

Calanus marshallae: Average Abundance

- Later stages observedEARLIER in year
- Warming is INCREASING growth rates

Calanus marshallae: Average Abundance

- Later stages observedEARLIER in year
- Warming is INCREASING growth rates

Calanus marshallae: Average Biomass

- Increase in biomass for WARM periods
- Potential fall predator-prey

MISMATCH

Calanus marshallae: Average Biomass

- Increase in biomass for WARM periods
- Potential fall predator-prey

MISMATCH

Take Home Messages

Ecological Responses to Warming

Ecological Responses to Warming

Acknowledgments

- North Pacific Research Board / NOAA's Alaska Fisheries Science Center / Lynker For funding and support
 - NOAA's GPU Hackathon 2021 for fostering connection and collaboration
 - Ryan Simpson, NVIDIA for the development of our size application
 - Colleen Harpold, Jesse Lamb, and Brooke Snyder for help with data collection and processing

