

ICES/PICES 7th International Zooplankton Production Symposium Session 7: The role of microzooplankton in biogeochemical cycling and food webs

Biogeography of Tintinnid in Global Oceanic Waters: A Review

Wuchang Zhang

Institute of Oceanology, Chinese Academy of Sciences Qingdao, P. R. China

Biogeography of Marine Plankton

Oceanic Biogeography of Zooplankton

Water masses determine the biogeography (Reid 1962)

The Nine-belt pattern of Oceanic Zooplankton

Arctic

Subarctic

Transition

Central

EQ / Eastern Tropical Pacific

Central

Transition

Subantarctic

Antarctic

Life in the Sea

World

Planktonic Viscous

World

Planktonic Inertial

World

Nektonic Inertial

 Marine life in three worlds size: $10^{-2} \sim 10^{7} \, \mu m$ across 9 size orders

Food Chain

Classical

femto-

0.02 µm

Large autotrophs

Fishes Mesozooplankton

Whales

 $2 \times 10^{6} \, \mu m \quad 2 \times 10^{7} \, \mu m$

(20 m)

(2 m)

 Plankton live in viscous and inertial world size: $10^{-2} \sim 10^{4.5} \, \mu m$

Ciliate dividing viscous and inertial

planktonic world

across 6.5 size orders

pico-

2 µm

0.2 µm

nano-

20 µm

micro-

200 um

meso-

 $2\times10^3 \, \mu m$

(2 mm)

macro-

mega-

2×10⁴ μm 2×10⁵ μm

(20 cm)

(2 cm)

Tintinnina (tintinnid)

Single cell ciliates, 10-200 μm

Ciliate vs copepod

Tintinnid in the eyes of artists

Fine Tintinnid pin \$245.00

Tintinnid Brooch 1

Fine Tintinnid pendant \$525.00

Biogeography of Tintinnids

Biogeography Pattern of Oceanic Tintinnids

Oceanic Tintinnid

Three-belt pattern (2012)

Oceanic Zooplankton

Nine-belt pattern

Boreal

Warm water

Warm water

Austral

Discrepancy

Our Research Objectives

- > Refinement of the existing three-belt distribution pattern of oceanic tintinnid
- >Any differences from the classical nine-belt pattern?

Method

- ☐ Sampling along longitudinal transects
- Sampling with vertical profile

Sampling Sites in the Arctic Gyres

Subarctic gyre in Bering Sea

Arctic Gyre in Beaufort S

- Feng et al. 2014. Polar Biology
- Wang et al. 2019. Polar Biology
- Wang et al. 2022. Frontiers in Marine Science
- Unpublished data from Summer 2023 cruise

Svalbard

North Pole

Sampling Sites in the Subpolar and Subtropical

Gyres

North Pacific Gyre and North Pacific Transition Zone

North and South Atlantic Gyre

[•] Li et al. 2021. Frontiers in Microbiology

Li et al. 2023. Frontiers in Marine Science

Sampling Sites in the Antarctic Gyres

Antarctic Circumpolar Current

Antarctic Slope Current

- · Liang et al. 2020. J Ocean Univ China.
- Li et al. 2023.Polar Research

The Twelve-belt pattern of Oceanic Tintinnid

Arctic-Subarctic Transition

Three more belts

Antarctic-Subantarctic
Transition

Antarctic Slope Gyre

Arctic

Subarctic

Transition

Central

EQ / Eastern
Tropical Pacific

Central

Transition

Subantarctic

Antarctic

The Arctic-Antarctic Asymmetry 1 species **Arctic Gyre** 1 species **Arctic Front Transition** Subarctic Gyre 5 species Transition Zone 2 species Subtropical Gyre The Southern Ocean EQ More belts Subtropical Gyre More species Transition Zone Subantarctic Gyre 4 species **Antarctic Front Transition** 3 species Antarctic Gyre 4 species-Antarctic Slope Gyre 1 species

The Arctic-Antarctic Asymmetry

- <u>Speculation:</u> Early formation of the Southern Ocean probably leads to more tintinnid species
 - ❖ The Southern ocean was formed around 33.5 million years ago.
 - The Arctic Ocean formed around 18.2 million years ago when Fram Strait began to widen.

- https://www.coolantarctica.com/
- https://www.polarpod.fr/

Arctic and Subarctic Belts Defined by Tintinnid or Copepod

finmarchicus

C. hyperboreus

C. glacialis

• the Subtropical Gyre

Tintinnid abundance peak: Above vs. below 50 m

the Arctic Gyre

Ptychocylis urnala

- Abundance peak in subsurface water during summertime
- Speculation: no difference between winter and summer

- the Antarctic Gyre
 - Laackmanniella naviculaefera → summer surface water
 - Cymatocylis cristallina → winter water

20

Speculation:

Overwintering strategy of summer surface water Tintinnid in the Antarctic \rightarrow in the sea ice

- Daly M et al. 2013. PLOS ONE
- https://www.nationalgeographic.com/science/article/140117-sea-anemone-antarctica-ice-ocean-animals-science
- https://askabiologist.asu.edu/explore/frozen-life

• the Arctic Slope Gyre

- o Cymatocylis drygalskii:
- → surface water of the Cosmonaut Sea,
- → 200~300m around the South Shetland Islands

- Li et al. 2023. Polar Research.
- Li et al. 2023. Polar Biology.

- ASC: a near-circumpolar, anticyclonic feature appearing at the shelf break in East Antarctica and the Weddell Sea.
- Uncertainty regarding the initiation of the ASC is indicated by the dashed line.
- Tintinnid -- a possible bioindicator of the initiation of ASC.

<u>The Making of an Assemblage——</u> Superposition of Biogeographic Belts

- Different tintinnid species have varying distribution core (highest abundance) and latitudinal / longitudinal range.
- Biogeographic belts: Collective distribution pattern of species with same core and similar range.
- Assemblage: Superposition of biogeographic belts.

The Making of an Assemblage: Superposition of Biogeographic Belts

- Scenario 1: Belts are adjacent but with no (or little) overlap
- Polar Gyre vs Subpolar Gyre
- Subpolar Gyre vs Subtropical Gyre

The Making of an Assemblage: Superposition of Biogeographic Belts

- Scenario 2: Neighboring belts of similar size overlap (collision)
- EQ vs Subtropical Gyre

Organization of Tintinnid Biogeography

- Scenario 3: A large belt overshadows (engulfs) a small belt.
 - EQ vs Central
 - Antarctic Gyre vs Antarctic Slope Gyre

Current Knowledge Gap

❖Intra belt difference

- Subpolar Gyres: North Atlantic vs North Pacific
- EQ: Pacific vs Indian vs Atlantic
- ❖ Neritic biome vs Oceanic biome

