Feeding rates of adult *Euphausia pacifica* on natural particle assemblages in the coastal upwelling zone off Oregon, USA

Xiuning Du, William T. Peterson and Tracy Shaw

What is the study species?

Macrozooplankton

Temperate euphausiid crustacean

Important consumer

Eaten by many fish and seabirds (salmon, hake, rockfish, black cod; auklets, shearwaters)

Euphausia pacifica Hansen

Why do we focus on *E. pacifica*?

- Widely distributed across the North Pacific
- Dominant euphausiid in California Current and in waters off Japan, Korea and China
- Key trophic link
- Peterson lab
- PICES WG 23

What do they eat?

Previous work

- A few studies in the laboratory using single species of cultured phytoplankton
- Some studies using stomach content and gut pigment analysis
- Need in situ feeding rates on natural assemblages

Hypothesis from our project...

• E. pacifica feeds omnivorously on the natural plankton assemblages.

 Feeding intensity and selectivity are closely related to the seasonality of coastal upwelling.

Study area and methods

Expt.	Date	krill source	water source	
No.		location	location	depth [m]
1	23-Feb	NH25	NH25	17
2	12-Apr	NH25	NH25	17
3	5-Jun	Cascade Head	NH05	27
8-Jun		Cascade Head	Inshore waters (NH)	10
5	19-Jun	NH25	NH25	17
6	27-Jun	NH25	NH25	10
7	21-Jul	NH25	NH25	10

Data:

- ❖Microscopic cell counts in terms of carbon Size-fractionated chl a concentration E. Pacifica weight In terms of carbon Rates:
- *Filtration rate (F, ml euphausiid -1 h-1) and Ingestion rate (I, μg C euphausiid -1 h-1) were calculated from equations of Frost (1972). Daily Ration (DR, % body C d-1) was calculated from ingestion rates (carbon units) and *E. pacifica* carbon weight.

Regression analysis:

❖ Fit the Filtration and Ingestion rate data vs. food concentration with two different models, Ivlev (Y = a*(1-exp(-bX))) and Holling Type-II (Y = aX/(1+bX)) and fit Daily Ration data with sigmoid model (Y= $a/(1+exp(-(x-x_0)/b))$).

Results

Initial food conditions.
Chl a concentration (μg L⁻¹); cell counts (μg C L⁻¹)

			··· •	• •		··· ·		
Expt.	C	Chl a concentration			autotrophic		heterotrophic	
No.	< 5μm	5-20 μm	>20 μm	Total	Diatom	Other	H.dino	Ciliate
1	na	na	na	4.92	114.8	13.3	-	8.3
2	0.52	0.09	0.23	0.84	6.3	11.4	0.5	7.2
3	0.24	0.12	0.06	0.42	0.4	9.9	0.3	5.5
4	0.27	0.17	0.04	0.48	6.2	7.4	1.6	34.5
5	0.25	0.20	0.43	0.89	68.3	103.6*	2.1	24.0
6	0.41	0.16	0.23	0.80	7.4	22.1	8.1	31.8
7	0.60	0.66	4.90	6.16	149.5	6.7	3.4	10.6

"Other" mainly comprised of autotrophic dinoflagellates and other flagellates; "*" High biomass came from dinoflagellates bloom

Filtration rates (F), Ingestion rates (I) and Daily Ration (DR)

Expt. F (ml euphausiid -1 h-1)			I (μg C euphausiid ⁻¹ h ⁻¹)		DR (% body C d ⁻¹)
No.	cell counts	Chl a	cell counts	Chl a	cell counts
1	19.8	19.1	na	na	5.3
2	-30.7	8.0	-0.6	0.01	-0.5
3	6.93	30.4	0.06	0.01	0.04
4	195.0	97.9	3.4	0.03	1.8
5	202.8	129.7	16.1	0.07	7.6
6	114.8	57.8	4.8	0.04	2.9
7	101.9	105.4	14.0	0.54	5.6

Feeding behavior

The relationship was significant (F=11.04, P=0.003, R²=0.33) with estimated maximum value is 189.6 ml.

Ingestion rates increased significantly as total food biomass increased (F=157.06, P<0.0001, R²=0.88).

Daily Ration significantly increased against total cell counts biomass (P<0.0001, R²=0.83).

Observed Daily Ration values: range = 0.03% ~ 1.4% Significant relationship between Daily Ration and ciliates biomass(P<0.0001, R²=0.93).

Observed Daily Ration values: range = 0.6% ~ 6.6% Significant relationship between Daily Ration and phytoplankton biomass (P<0.0001, R²=0.94).

Filtration rates (F) weakly correlated with total chl a concentration; no significant relationships between F and chl a size fractions: >20 μ m, 5~20 μ m and <5 μ m.

Summary

- * E. pacifica feeding rates strongly depend on in situ food biomass. Higher ingestion rates were observed during upwelling season (Expts 5&7).
- *Under low plankton biomass situation, low biomass of both diatom and ciliate, *E. pacifica* showed weak grazing activity and they might switch to smaller phytoplankton (Expts 2&3).
- * E. pacifica always showed grazing pressure on ciliates no matter if phytoplankton were abundant or not. When ciliates were the main biomass contributor, they could significantly enhance grazing intensity (Expts 4).

- Daily ingested carbon generally corresponded with the relative contributions of the main prey items, phytoplankton and ciliates.
- *Larger phytoplankton (mainly diatoms) and ciliates both could be the important food sources at the same time or alternatively (Expts 4&7).
- *We couldn't track feeding rates on dinoflagellates very well since they usually have a low abundance.

Acknowledgements

We thank all people in Peterson lab, other volunteers at HMSC and the Captains on the R/V Elakha for collecting the samples and giving me a hand for setting up the experiments. Thanks also for the advise and support from Dr. Guangxing Liu and **Marine Plankton Lab of College of Environmental** Science and Engineering in China. This study was funded jointly by the China Scholarship Council and by the U.S.GLOBEC "Krill Synthesis" project.