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Three NE Pacific food web models 
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Ecopath with Ecosim 
Polovina, Christensen, Pauly, Walters 
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Model uncertainty 
For all impacts, we ran scenarios of 3 different strengths: 
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Ainsworth et al., in review 



Model uncertainty 

Ainsworth et al., in review 

Models vary in their sensitivity to climate scenarios 

Moderate 

Nominal 

Severe 



Model uncertainty 

Ainsworth et al., in review 

Functional groups vary in their sensitivity to climate scenarios 

Southeast Alaska N. British Columbia N. Cali. Current 
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Additive=                           +        + 

Cumulative effects 

Geomean=(                       x        x     ).3  

Synergy=Additive + Geomean 



Cumulative effects 

Effect A 

Effect B 

Geometric mean 

Additive 

Synergy 
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Diversity scores impacted by summation technique 



SE Alaska N. British Columbia N. Cali Current 

<-50% 

-50% − -10%  
-10% − 10%  

10%-50% 

Geomean  Additive Synergy Geomean  Additive Synergy Geomean  Additive Synergy 

Forage fish -0.49 -1.00 -1.00 -0.25 -1.00 -1.00 -0.01 -0.88 -0.92 

Shrimp -0.07 -0.95 -1.00 -0.28 -1.00 -1.00 -0.12 -1.00 -1.00 

Pelagics -0.17 -0.49 -0.15 -0.20 -0.93 -0.94 -0.04 -0.61 -0.49 

Salmon 0.13 -0.28 -0.88 -0.39 0.25 1.35 -0.16 -0.92 -1.00 

Marine mammal 0.03 -0.21 -0.07 -0.02 0.06 0.02 0.05 0.01 0.09 

Demersal fish 0.09 -0.16 -0.17 -0.10 -0.18 -0.52 -0.08 -0.01 0.13 

Squid 0.02 -0.15 -0.49 0.00 0.33 0.07 0.90 1.90 1.64 

Zooplankon 0.14 -0.10 -0.33 0.05 0.48 1.19 -0.04 0.08 0.14 

Rockfish 0.13 -0.10 -0.05 0.07 0.03 -0.93 -0.11 -0.38 -0.84 

Flatfish 0.11 -0.09 -0.03 -0.28 -0.42 -0.38 0.21 0.43 0.61 

Crabs 0.02 -0.06 0.02 -0.29 -0.48 -0.34 -0.23 -0.99 -1.00 

Seabird 0.26 -0.04 0.75 0.04 0.15 0.43 0.07 -0.44 -0.72 

Shellfish -0.08 -0.02 0.12 -0.19 -0.09 -0.06 0.05 -0.10 0.63 

Sharks 0.10 0.03 -0.25 0.00 0.07 0.09 -0.35 -0.45 -0.36 

Primary producers 0.25 0.08 -0.02 -0.05 -0.11 -0.05 0.04 -0.14 -0.05 

Jellies       0.11 0.45 1.17 0.20 -0.05 1.21 

>50%  

% change from baseline 

Not calculated 

(Dis)agreement among techniques 
on magnitude of change 



13% 

13% 

7% 
47% 

20% 

SE Alaksa 

25% 

12% 

13% 
31% 

19% 

N. British Columbia 

19% 

31% 

6% 

25% 

19% 

N. Cali. Current 

(Dis)agreement among techniques 
on magnitude of change 

All same Additive & Geomean 

Synergy & Geomean 

Synergy & Additive 

All different 



Process uncertainty 
 Combinatorial techniques greatly affect magnitude of 

predicted change 

 

 Agreement among techniques when results ranked is 
slightly better 

 

 Must consider how well combination techniques 
capture physiological and population-level process of 
interest 
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Ocean acidification scenarios 

Certain 

Shrimp 

Euphausiids 
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Uncertain – unidirection 

Crabs 

Copepods 

“Infaunal detrital inverts” 

“Epibenthic inverts” 

“Carnivorous zooplankton” 

“Small zooplankton” 

Marine plants 
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Uncertain – multidirectional 

Jellyfish 

Phytoplankton 

“Microzooplankton” 

“Large zooplankton” 
 

Busch et al., in prep. 



Ocean acidification scenarios 
 Linear change over 50 yrs. 

       Climate scenario 

Effect size Nominal Moderate Severe 

Small 5% 10% 15% 

Large 25% 50% 75% 

Ainsworth et al., in review 
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Northern British Columbia 

Certain groups Uncertain negative Uncertain positive 
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Northern British Columbia 

Certain groups Uncertain negative 

Phytoplankton positive 

Uncertain positive 

Phytoplankton negative 



Effect size uncertainty 
 Importance of understanding climate change impacts 

on primary producers 

 

 Ecosystem impacts of change in non-primary 
producers can be dwarfed by change in primary 
producers 
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Monte Carlo methods 
 Biomass 

 Ecopath with Ecosim Monte Carlo routine 

 Coefficient of variation dependent on functional group 

 15% phytoplankton, zooplankton & benthic meiofauna 

 5% all others 

 Uniform distribution, 200 trials 

 Vulnerability 

 Manually implemented in Ecosim 

 Every predator-prey interaction varied independently 

 Coefficient of variation: 50% all groups 

 Uniform distribution, 200 trials 

 Results: 1) functional group, 2) aggregated functional group 
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Monte Carlo results 
Biomass Monte Carlo: 
Southeast Alaska, benthic invertebrates 

Biomass Monte Carlo: 
N. Cali Current, small pelagic fish 

Compounding impacts of trophic dynamics 

Mean 
25%, 75% 



Monte Carlo results 
 About 30% of the functional 

groups and aggregated 
functional groups have 
>10% change in biomass 

 Biomass change for 
vulnerability Monte Carlos 
less than forced variation 

 Magnitude of change 

 Number of groups 
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All models 2 models 
Salmon Sharks 
Pacific Ocean perch Forage fish 
Flatfish Herring 
Halibut Rockfish 
Crabs Pacific cod 
Shrimp Arrowtooth 
Epifaunal inverts Phytoplankton 
Infaunal detritivores 

Sensitive functional groups: biomass change >10% 

Functional groups Aggregated groups 

All models 
Benthic inverts 
 

2 models 
Large and small pelagics 
Birds 
Flatfish 
 

1 model 
Elasmobranches 



Parameter uncertainty 
 Knowing the biomass and vulnerability of some 

species groups matters more than others 

 

 Sensitivity to biomass estimates is greater than to 
vulnerability estimates 

 

 Sensitivity of specific functional groups to parameter 
uncertainty is fairly well captured in aggregated 
groups 

 



Conclusions 
 Modeling ecosystem impacts of multiple climate 

change impacts is messy 

 

 Understanding how uncertainty impacts our results 
can help us target assumptions and data inputs that 
may matter most 

 

 Recognize that modeling exercises tell us the type of 
changes we may expect, not the magnitude or the 
specific effects 

 


