PICES 2011 Annual Meeting October 14-23, 2011, Khabarovsk, Russia

Decadal Variability of the upper-ocean heat content in the Northwestern Pacific

Hanna Na and Kwang-Yul Kim

School of Earth and Environmental Sciences Seoul National University, Seoul, Republic of Korea

Introduction

Northwestern Pacific

- Large variability related to the western boundary current system, Kuroshio and Kuroshio Extension
- Complex interaction between dynamics and thermodynamics and between atmosphere and ocean
- Understanding long-term variability in the Northwestern Pacific greatly contributes to understand the climate system

Topography and mean SSH

(a) Topography and Mean SSH: NP 45°N 40°N 35°N 30°N 20°N 120°E 130°E 140°E 150°E 160°E 170°E 180°

Variability in sea surface height and turbulent heat flux

Introduction

- Extensive studies on the long-term variability in the Northwestern Pacific were based on the SST analysis.
- ❖ It has been argued that <u>Sea Surface Temperature (SST) is</u> <u>more a consequence of air-sea interaction</u> than of ocean dynamics [Sutton and Mathieu, 2002].
- Neither SST nor air temperature in the ocean boundary layer is representative of ocean or atmospheric states [Kelly et al., 2010].
- ❖ Ocean heat content is a better climate predictor than SST because SST anomalies decorrelate rapidly on seasonal time scales [Deser et al., 2003].
- ❖ Analyses of the upper-ocean heat budget show that while air-sea fluxes dominate on seasonal time scales, the <u>ocean</u> <u>contribution becomes increasingly important on longer time</u> <u>scales</u> [Qiu and Kelly, 1993; Kelly and Qiu, 1995].

Objectives

Understanding <u>decadal</u> variability
in the <u>Northwestern Pacific</u>
by investigating

<u>upper-ocean heat content</u> variability

Data

- ❖ SODA (Simple Ocean Data Assimilation Reanalysis)
 - monthly means: 40 years from 1967 to 2006
 - spatial resolution: 0.5°
 - depth: 19 levels from 5.01 m to 465.91 m
 - 5.01, 15.07, 25.28, 35.76, 46.61, 57.98, 70.02, 82.92, 96.92, 112.32, 129.49, 148.96, 171.4, 197.79, 229.48, 268.46, 317.65, 381.39, 465.91 [m]
 - temperature, salinity: heat content
 - Sea Surface Height (SSH)

Upper-ocean heat content

❖ Vertically integrated heat content (upper 400 m)

$$Q = \int_{-400}^{0} \rho(T, S, 0) c_p(T, S, 0) T(z) dz$$

ρ: density

c_p: specific heat capacity

T: temperature

S: salinity

standard deviation

Monthly for 40 years from 1967 to 2006, 0.5°×0.5°

Upper-ocean heat content

- from the IPCC Fourth Assessment Report: Climate Change 2007
- Linear trends (1955–2003) of change in ocean heat content per unit surface area (W/m2) for the 0 to 700 m layer, based on the work of Levitus et al. (2005)

Method

CSEOF (Cyclostationary EOF) Analysis

$$T(r,t) = \sum_{n} CSLV_{n}(r,t)PC_{n}(t)$$

$$CSLV_{n}(r,t) = CSLV_{n}(r,t+d)$$

$$CSLV_{n}(r,t): \text{ physical process (e.g. El Niňo, seasonal cycle)}$$

$$PC_{n}(t): PC \text{ (amplitude) time series}$$

$$CSLV_{n}(r,t) = CSLV_{n}(r,t+d); \text{ covariance statistics is periodic}$$

$$d: \text{ nested period (12 months)}$$

Multiple Regression analysis

$$PC_{i}^{(T)}(t) = \sum_{n} a_{n} PC_{n}^{(P)}(t) + \varepsilon(t)$$

$$CSLV_{i}^{(PR)}(r,t) = \sum_{n} a_{n} CSLV_{n}^{(P)}(r,t)$$

Upper-ocean Heat Content Mode 2

Slight cooling along the latitude band between 30°N and 45°N

Related to the negative trend along the Kuroshio Extension

Interdecadal transition of the interannual variability

Upper-ocean Heat Content Mode 3

positive/negative anomalies in different regions of the Northwestern Pacific

southern regions to the south of ~ 35°N including the East/Japan Sea vs. northern regions

decadal variability during the 40 years

Regression of upper-ocean temperature

The regressed temperature anomalies show how temperature variability in the upper-ocean contributes to the heat content variability.

300

400 L 120

west

140

150

LONGITUDE (E)

170

east

anomaly

(target: mode 3)

Regression of upper-ocean temperature

143°E meridional section

Mean temperature

target: heat content

Regressed temperature anomaly (target: mode 2)

Regressed temperature anomaly (target: mode 3)

Regression of upper-ocean temperature

target: heat content mode 3

Differences in steepness of the isotherms and meridional temperature gradient

Mean temperature

+

Reconstructed regressed temperature anomaly

Discussion - Kuroshio Extension

Two dynamic states

- elongated (stable) state: intense jet, northerly zonal mean path, well-defined southern recirculation gyre
- contracted (unstable) state: reduced eastward transport, more southerly flow path
- Qiu and Chen, 2005; Kelly et al., 2007; Qiu and Chen, 2011

Transport 1

Southern recirculation gyre strength \uparrow

Latitudinal position \uparrow

EKE in the upstream KE region ♥

contracted state

Transport **Ψ**

Southern recirculation gyre strength **Ψ**

Latitudinal position **Ψ**

EKE in the upstream KE region ↑

Qiu and Chen, 2011

Discussion - Regression of SSH

130°E

140°E

150°E

160°E

170°E

180°W

130°E

140°E

150°E

160°E

170°E 180°W

Discussion - Regression of SSH

Summary

- Upper-ocean heat content variability in the Northwestern Pacific Monthly means during 40 years from 1967 to 2006
- Interdecadal transition of the interannual variability (Mode 2)
 Related to negative trend along the Kuroshio Extension
 Seems to be originated from surface forcing, e.g. air-sea interaction (further investigation is needed)
- Decadal variability (Mode 3)
 - Positive anomalies in the southern region including the East/Japan Sea and negative anomalies in the northern region (in case of the positive PC time series)
 - Related to the meridional temperature gradient and steepness of the isotherms
 - Related to the two dynamic states (elongated vs. contracted) of Kuroshio Extension
 - Related to the SSH variability (intensity of jet & strength of the recirculation gyre) over the Kuroshio Extension region