

Future Global Ocean Observing System Built on requirements, promoting alignment, delivering relevant information

Maciej Telszewski, IOCCP and GOOS

The Global Ocean Observing System

Institute of Oceanology of Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland Phone: +48 58 731 16 10 / Fax: +48 58 551 21 30, www.ioccp.org

The Global Ocean Observing System

- the system GOOS
 - collaborative system of sustained observations
 - built on requirements
 - in situ and satellite
 - operational and research funding
 - linked to data management and product generation activities
 - global-scale and coastal
- the GOOS programme
 - advocacy for all elements of the system
 - provide a platform for collaboration through development of common observing strategies
 - promote global participation through capacity development

OceanObs'09

Cnes

EUMETSAT

eesa

Ocean information for society: sustaining the benefits, realizing the potential

 (\mathbf{a})

Framework for Ocean Observing Why a Framework?

- OceanObs' 09 identified tremendous opportunities and significant challenges for the global ocean observing system
- Called for a framework for planning and moving forward with an enhanced global sustained ocean observing system over the **next decade**, integrating new physical, biogeochemical, biological observations while sustaining present observations

post-OO'09 Working Group

post-OO'09 Working Group

www.oceanobs09.net

Framework for Ocean Observing **A simple system**

Input (Requirements)

Output (Data & Products) Process (Observations)

Framework for Ocean Observing **A simple system**

Framework for Ocean Observing Societal drivers prior to OceanObs'09

PICES 2016 Annual Meeting

2-11 November 2016, San Diego, USA

Framework for Ocean Observing Societal and scientific drivers expanded

Societal needs and scientific requirements for the global ocean observing system

Physics

- The ocean component of the earth's <u>energy balance and freshwater cycle;</u>
- The ocean ability to <u>redistribute key</u> <u>climate variables</u> and the change and variability of this circulation
- Ocean and <u>Ocean-Atmosphere exchange</u> as controls, driver, and mediator of major climate model. High, mid and low latitude <u>climate modes</u>

ssues Impact

<u>Severe climate</u> – sea level rise, coast inundation, wave and storm damage

Issues

Societal needs and scientific requirements

Biology and Ecosystem

International organizations / conventions*

Societal needs and scientific requirements Biogeochemistry

- The role of ocean biogeochemistry in climate
 - Q1.1 How is the ocean carbon content changing?
 - Q1.2 How does the ocean influence cycles of non-CO₂ greenhouse gases?

- Human impacts on ocean biogeochemistry
 - Q2.1. How large are the ocean's "dead zones" and how fast are they changing?
 - Q2.2 What are rates and impacts of ocean acidification?
- Ocean ecosystem health
 - Q3.1 Is the biomass of the ocean changing?
 - Q3.2 How does eutrophication and pollution impact ocean productivity and water quality?

Driven by requirements, negotiated with feasibility **Essential Ocean Variables**

- We cannot measure everything, nor do we need to
- Driven by requirements, negotiated with feasibility
- Allows for innovation in the observing system over time

Feasibility vs. Impact

We cannot measure everything, nor do we need to...

EOVs and readiness level

Physics

- Sea State
- Ocean surface vector stress
- Sea Ice
- Sea level
- SST
- Subsurface temperature
- Surface currents
- Subsurface
 currents
- SSS
- Subsurface salinity

Biology and Ecosystems

- Phytoplankton biomass and productivity
- HAB incidence
- Zooplankton diversity
- Fish abundance and distribution
- Apex predator abundance and distribution
- Live coral cover
- Seagrass cover
- Mangrove cover
- Microalgal canopy cover

Biogeochemistry

- Oxygen
- Inorganic macro nutrients
- Carbonate system
- Transient tracers
- Suspended
 particulates
- Nitrous oxide
- Carbon isotope (¹³C)
- Dissolved organic carbon

The Essential Ocean Variables Specification Sheets

1. FOV

W	-	Reductories
1	P.C.	(West 1) Heaville
A		Steepled to be a Valuation
1	A	
	- (106 0
5		14 HAN
Fred	- 74	
B	- (F	A INCO STAT
	- +	

1

Table 1. LOV Information	
Name of EOV	Carbonate System
Sub-Variables	Dissolved Inorganic Carbon (DIC), Total Alkalinity (TA), Partial pressure of carbon dioxide (pCO ₂) and pH; [At least two of the four Sub-Variables are needed.]
Derived Products	Saturation state (aragonite, calcite), Dissolved carbonate ion concentration, Air-sea flux of CO ₂ , Anthropogenic carbon, Change in total carbon
Supporting Variables	Temperature (T), Salinity (S), Wind speed, Atmospheric column-averaged dry- air mole fraction of CO2 (xCO_2), Barometric pressure (P), Oxygen (O_2), Nutrients, Calcium concentration, Transient tracers, Oxygen to argon ratio (O_2 /Ar)
Contact and Lead Expert(s)	Contact: IOCCP Lead Experts: Ute Schuster (University of Exeter, United Kingdom), Masao Ishii (JMA-MRI, Japan), Richard Feely (NOAA PMEL, USA)

Combined performance of <u>current</u> and <u>future</u> networks (Carbonate system)

Observing Network	Ship of	Repeat	Surface	Drifters	Ship-based	
	(SOO)	(RH)	(Moorings (Msurf)	(D)	Time-Series (STS)	
Phenomena 1,3 Addressed		2,3	1,3,4	1,3	1,3,4,5	
Readiness Level of the Network (as defined in the FOO)	Mature	Mature Mature		Mature	Mature	
Spatial Scales Currently Captured by the Observing Network	Every 10°, Denser in the coastal domain, Surface	20°, Full depth	Local	Regional	Local	
Typical Observing Frequency	Weekly to decadal	Decadal	Sub-daily to seasonal and annual	Hourly to annual	Weekly to decadal	
Supporting Variables Measured	ng Variables Atmospheric / ocean pCO ₂ , T, S, Desired: TA or DIC (pH)		T, S, Wind T,S speed, P, Atmospheric CO ₂		Wind speed, TA/DIC , Atmospheric and ocean pCO ₂	
Sensor(s)/Technique	/Technique Equilibrator, Permeable membrane, Infra- red, CRDS		Equilibrator, Permeable membrane	Spectro- photometric	Titration, equilibrator	
Accuracy/Uncertainty Estimate (units)	<u>pCO</u> 2 ±2 μatm	<u>TA/DIC</u> ±2 μmol kg ⁻¹ <u>pH</u> ±0.005 <u>pCO</u> ₂ ±2 μatm	<u>pCO</u> 2 ±5 μatm	<u>рСО2</u> ±5 µatm <u>рН</u> ±0.005	TA/DIC ±2 μmol kg ⁻¹ <u>pH</u> ±0.005 <u>pCO</u> ₂ ±2 μatm	
Reporting Mechanisms(s)	GOOS Implementation Plan (?) IOCCP Report					

*By an Observing Network we understand a number of reasonably well coordinated observing platforms equipped with technology allowing measurements of this particular EOV.

Table 4: Future Observing Networks					Vetworks*					
Observing Network	Profiling Floats (PF)	Surface gliders (Gsurf)	Subsurface moorings (Msubsurf)	Subsurface gliders (Gsubsurf)	Extended Ships Of Opportunity (ExtSOO)	Ship of pportunity (SOO)	Repeat Hydrography (RH)	Surface Moorings (Msurf)	Drifters (D)	Ship-based Time-Series (STS)
					(Exi300)	1,3	<mark>2</mark> ,3	1,3,4	1,3	1,3,4,5
Phenomena Addressed	?	?	?	?	?		_			
Readiness Level of the Observing Network (as defined in the FOO)	<u>pH</u> Pilot	pCO2 Pilot	Conceptual	Conceptual	<u>pCO2</u> Mature	Mature	Mature	Mature	Mature	Mature
	<u>pCO2</u> Conceptual <u>DIC</u> Conceptual	<u>pH</u> Pilot			<u>Underway</u> <u>DIC/TA</u> ?	every 10°, inser in the stal domain, Surface	20°, Full depth	Local	Regional	Local
	<u>TA</u> Conceptual				<u>Underway pH</u> ?	kly to decadal	Decadal	Sub-daily to seasonal and annual	Hourly to annual	Weekly to decadal
Spatial Scales Captured by the Observing Network	Every 10°, Denser in the coastal domain, Surface	20°, Full depth	1 km	10-1000 km	Every 10°, Denser in the coastal domain, Surface	nospheric / an pCO ₂ , T, S, red: TA or DIC (pH)	DIC, TA, pH, pCO ₂	T, S, Wind speed, P, Atmospheric CO ₂	T,S	Wind speed, TA/DIC , Atmospheric and ocean pCO ₂
Typical Observing Frequency	Weekly to annual	Daily to monthly	Sub-daily to seasonal and annual	Daily to monthly	Weekly to annual	quilibrator, lermeable hbrane, Infra- red, CRDS	Benchtop instruments	Equilibrator, Permeable membrane	Spectro- photometric	Titration, equilibrator
Time-Scale Until Part of Observing System						pCO ₂ ±2 µatm	TA/DIC ±2 umol kg ⁻¹	pCO ₂ ±5 µatm	pCO ₂ ±5 uatm	TA/DIC ±2 umol kg ⁻¹
Supporting Variables Measured	pH, pCO₂, DIC, TA	pCO₂, pH	pH, pCO₂	pH, pCO₂	pH, pCO₂, DIC, TA		<u>рН</u> ±0.005		<u>рН</u> ±0.005	<u>рН</u> ±0.005
Sensor(s)/Technique	Spectro- photometry Variety of	Spectro- photometrySpectro- photometry & EquilibratorPermeable membraneSpectro- photometryVariety of sensors areVery dynamic field, varietyVery dynamic field, varietyVery dynamic field, variety of of sensors are being developedVery dynamic of sensors are being developedVery dynamic field, variety of sensors are being developed	DIC NDIR (?CRDS)		<u>pCO</u> 2 ±2 μatm			<u>pCO2</u> ±2 μatm		
	sensors are being developed		field, variety of sensors are	Equilibrator	GOOS Implementation Plan (?) IOCCP Report					
	Lorotopou		Permeable membrane	e understand a number of reasonably well coordinated observing platforms owing measurements of this particular EOV.				rving platforms		

Surface Ocean CO₂ Atlas (version 4) public on 1 September 2016

Global synthesis and gridded products of surface ocean fCO₂

- in uniform format with quality control;
- V4: 18.5 million fCO₂ values, accuracy < 5 μ atm from 1957-2015 (flags of A-D);

x 10⁶

1960

V4 A-F

1970

1980

1990

2000

2010

2.0

1.0

- Plus calibrated sensor data (< 10 µatm, flag of E);
- Interactive online viewers;
- Downloadable (text, NetCDF, ODV, Matlab);
- Documented in ESSD articles;
- Community activity with >100 contributors worldwide.

ssue

Ocean Interior Data Synthesis

- 999 488 sampling depths
- 1972 2013 **GEOSECS-TTO-**WOCE-CLIVAR
- Corrected for biases

Pane

Extensively documented

Released Jan 19. 2016

Ocean Acidification

GOA-ON

Ocean Acidification Data Portal

Global Ocean Acidification Observing Network

A small technical working group lead by Benjamin Pfeil (IOCCP Data Manager) was established to investigate possibilities to create a dedicated portal for ocean acidification observing data. A workplan and initial goals of this group were turned into an agenda for a small workshop held in Monaco in June 2015. The group works on the report that will incorporate the recommendations made by the OA-ICC Advisory Board, the GOA-ON Executive Council and workshop participants. This document will be distributed across the community for comments and will serve as a baseline for a data portal implementation plan, which will be hopefully developed before May 2016.

Ocean Acidification Data Synthesis Products

As a global approach similar to SOCAT was deemed not feasible at the moment for such a fragmented and mostly coastal community, it was suggested that effort might initially be directed at a regional synthesis for the western Pacific (primarily involving China, Taiwan, Japan and Rep Korea), and for the NE Atlantic/European seas (expanding on a UK/North Sea synthesis that has just been finished by NERC/Defra and ICES).

Towards sustained system: requirements, observations, data management **Readiness**

Mature

Pilot

Concept

Attributes:

Peer review of ideas and studies at science, engineering and data management community level.

Increasing Readiness Levels Planning, negotiating, testing, and approval within appropriate local, regional, global arenas,

Attributes: Products of the global ocean observing system are well understood, documented, consistently available, and of societal benefit.

FRAMEWORK PROCESSES BY READINESS LEVELS

f the global rving system are stood, documented, v available, and

THANK YOU!

The Global Ocean Observing System

Institute of Oceanology of Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland Phone: +48 58 731 16 10 / Fax: +48 58 551 21 30, www.ioccp.org