Macro-scale patterns in upwelling/downwelling activity at North American west coast

¹Saldívar-Lucio, R., ²E. Di Lorenzo, ³M. Nakamura,

¹H. Villalobos, ⁴D. ¹Lluch-Cota and ¹P. Del Monte-Luna

Low-frequency Vs specific periodic signals

AUTOCORRELATION DILEMMA

Not correct for running projections

The inclusion of each signal...

1) impact on signal projection

(e.g. Amplitude and phase)

2) affects statistical confidence& complicates interpretation

Ocean Physics

Multi-scale variability

Upwelling activity

- → Ocean productivity
- → Pelagic habitats
- → Ecological interactions
- → Biomass fluctuations

>20% of the global fishery catches

Upwelling activity

- A) Worked on **clean signal**(s), obtained from original time series (upwelling index).
- B) Converging results from different techniques & analysed different temporal resolutions.
- C) Compared identified periodicities to those described in (scientific) literature.
- D) Tested forecasting skill of selected periodicities.

A) Worked on clean signal(s), obtained from original time series (upwelling index).

- B) Converging results from different techniques
 - & analysed different temporal resolutions.
- C) Compared identified periodicities to those described in (scientific) literature.
- D) Tested **forecasting skill** of selected periodicities.

15th Stations

 $21 - 60^{\circ} \text{ N}$

From 1946 to 2012

Atmospheric pressure fields

Geostrophic winds

Ekman transport

Total upwelled water per year

 $(m^3 * s^{-1} / 100 m coastline)$

Switzer y Green, 1984; Shapiro y Switzer, 1989

All available analytical tools are imperfect in this point

A) Worked on **clean signal(s)**, obtained from original time series (upwelling index).

B) Converging results from different techniques & analysed different temporal resolutions.

- C) Compared identified periodicities to those described in (scientific) literature.
- D) Tested forecasting skill of selected periodicities.

- A) Worked on **clean signal(s)**, obtained from original time series (upwelling index).
- B) Converging results from different techniques
- & analysed different temporal resolutions.
- C) Compared identified periodicities to those described in (scientific) literature.
- D) Tested forecasting skill of selected periodicities.

	_
2	

Years

- A) Worked on **clean signal(s)**, obtained from original time series (upwelling index).
- B) Converging results from different techniques
- & analysed different temporal resolutions.
- C) Compared identified periodicities to those described in (scientific) literature.
- D) Tested forecasting skill of selected periodicities.

Selected periodicities Vs False (random) signals

EXPLANATION

Correlation coefficient:

Observed vs. predicted

Positive Outlier

Fraction (percentage) of

Frequency (%)

errors greater than \bar{X}

Negative Outlier

Fraction (percentage) of

Frequency (%) errors less than \bar{X} .

Root Mean

Square Error

 $RMSE = \sqrt{\frac{1}{N}} \sum_{t=1}^{N} e_i^2$

Selected periodicities Vs False (random) signals

Zhang A, Hess KW, Wei E, Myers E. Implementation of model skill assessment software for water level and current in tidal regions. US Department of Commerce, NOAA Technical Report NOS CS 24. 2006.

How can we explain the presence

of this cycles?

30 years

Atmospheric Circulation Weak **Strong** AC **AC** CCCC North Pacific Gyre

Di Lorenzo *et al.*, 2008; Cummings and Freeland, 2007; Beamish *et al.*, 1999; King *et al.*, 1998; Ware 1995;

High atmosphere → Wind surface

Transitions of Meridional to Zonal winds dominance

Mazzarella, 2007; Klyashtorin and Lyubushin, 2007, Beamish et al., 1999; King et al., 1998;

Meridional dominance

Zonal dominance

California Current Sea Surface Temperature

- Displace atmospheric pressure centers
- Increase / reduce atmospheric pressure gradients

 Regional attraction of air and water masses.

Munk y Bills, 2007; Pugh, 1987; Baar et al., 2012; Trenary y Han, 2012.

11 years

Solar Irradiance

 Pressure centers strengthening / weakening.

Increase / reduce ascending and descending air fluxes at atmospheric cell boundaries.

Hadley

Hadley cell

Polar high

Polar easterlies

Horse latitudes

Doldrums

tracle winds

ladley cell NE trade winds

Subpolar

Equatorial low

Polar front

Westerlies

Under an scenario of weak atmospheric circulation (zonal winds dominance)

Water column stratification

Less nutrients availability

Primary Producers (big cells)

PP (small cells)

CONCLUSIONS

1) MAFs (low-frequency signals) are composed by **similar periodic signals**.

CONCLUSIONS

2) The relative importance of each detected MAF was variable, according to the geographic location, **reflecting interactions of** (underlying-common) large-scale to local climate conditions.

CONCLUSIONS

3) The Ekman transport studied through the Upwelling index for the geographical domain 21 – 60°N, contains low-frequency signals that vary in proximity to changes in **long-term dominant winds**, **the lunar nodal cycle and solar irradiance**.

... These natural phenomena are known to **influence upwelling/downwelling at shorter time scales**, for example: the predominance and intensity of zonal/meridional winds in the scale of days to weeks, and the lunar phase cycle that modulates water and air masses distribution in a daily and weekly basis (tides).

... what is coming?

What are the upwelling-downwelling MAFs relationships with physics of coastal and pelagic habitats ???

e.g. vertical velocities, eddies, eddy kinetic energy, offshore advection . . .

Macro-scale patterns in upwelling/downwelling activity at North American west coast

¹Saldívar-Lucio, R., ²E. Di Lorenzo, ³M. Nakamura, ¹H. Villalobos, ⁴D. ¹Lluch-Cota and ¹P. Del Monte-Luna

¡Thank you!

Contact: romeo26_1979@yahoo.com

