Top- and mid-trophic level responses to ocean conditions off central California

Jaime Jahncke, Pete Warzybok, Meredith Elliott, Russell Bradley, Jan Roletto, and Danielle Lipski

November 10, 2016 S12: MONITOR/BIO/TCODE Topic Session

Conservation science for a healthy planet.

How does physical forcing at the regional (e.g., UI and spring transition) and basin scale (e.g., the PDO, NPGO and ENSO) affect predators and prey off central California?

Conclusions

Cold-productive conditions are best!

- Early spring transition and La Niña-like (SOI) winters were important for early breeding
- Early breeding, high NPGO winters, strong spring upwelling, and Cool PDO springs were important for breeding success and prey availability

Research on Farallon Islands since 1968

Bill Sydeman (1994-2007)

>20 Farallon biologist led the fieldwork
>1,000 interns participated in data collection

Point Blue

Cooperative agreement with USFWS

Dependent variables: timing of breeding, breeding success, and main prey consumed by Farallon seabirds

Independent variables: spring transition, UI, PDO, NPGO and SOI UI, SOI, PDO and NPGO were averaged for:

Winter	early	Nov-Dec	
	late	Jan-Feb	
Spring	early	Mar-Apr	
	late	May-Jun	

Climate related variables

Common murre timing of breeding

Murres breed early in years with cool late winter conditions and early spring transition

Timing of breeding

Cold and productive conditions

Warm, poor, 'relaxed' conditions

	Cassin's auklets	Common murre	Brandt's cormorant	Western gull	Rhinoceros auklet	Pigeon guillemot
Transition		+	+	+		
Upwelling			+		+	
			Early-winter		Early-winter	
SOI						
PDO	Late-winter	Late-writter	+ Late-winter	Early-spring	Late-white	Late-winter
NPGO			Early-winter			Late-spring

Cassin's auklet breeding success

Auklets breeding success is high during early lay date years, weak upwelling but productive ocean conditions in late winter

Breeding success

Cold and productive conditions

Warm, poor, 'relaxed' conditions

	Cassin's auklets	Common murre	Brandt's cormorant	Western gull	Rhinoceros auklet	Pigeon guillemot
Transition or Lay Date		+	_	_		
Upwelling	Late-winter	+ Late-spring			+ Early-spring	+ Early-spring
SOI						
PDO		Late-spring				
NPGO	+					
	Late-winter		Early-spring	Early-spring		

Common murre diet – Juv. Rockfish

Rockfish is high after productive late winter conditions Anchovy is high after 'relaxed' early winter conditions

Cassin's auklet diet – E. pacifica

E. pac is high during cool and productive spring conditions

T. spin is high after productive early winter and 'relaxed' spring conditions

Diet – Krill and rockfish

Cold and productive conditions

Warm, poor, 'relaxed' conditions

	Cassin's auklet E. pacifica	Common murre	Brandt's cormorant	Rhinoceros auklet	Western gull	Pigeon guillemot
Transition						
Upwelling		+		+		+
SOL		Late-spring		Late-spring		Late-spring
501						
PDO	—	_				+
	Early-spring	Early-spring				Early-winter
NPGO	+	+	+			
	Late-spring	Late-winter	Late-winter			
			Late-spring			
Point Blue						

Krill acoustic biomass and auklets

 \bigcirc

Conservation science for a healthy planet.

Krill is larger in cold productive years

length ranges (mm)

Conservation science for a healthy planet.

Cold-productive conditions are best!

- Early spring transition was important for early breeding and both were important for high breeding success
- La Niña-like (SOI) winters were important for early breeding
- **High NPGO winters** were important for high **breeding success** for C. auklets and **high prey availability**
- Strong spring upwelling important for high breeding success for cormorants and R. auklets and rockfish availability
- **Cool PDO springs** were important for high **breeding success** for murres and **high prey availability**

Conclusions

- Seasonal variability (UI) and Interannual variability (SOI) important for timing of breeding
- Interdecadal variability (PDO and NPGO) important for breeding success and prey availability
- While we see increased variability, "old-known" relationships between climate, predator and prey still hold
- Increased frequency of El Niño, changes in the onset and productivity of upwelling will have the most effect on seabirds

Thank you!

Elinor Patterson Baker Trust Fund **Bently Foundation Boring Family Foundation** California Sea Grant California Dept. of Fish and Wildlife **Cordell Marine Sanctuary Foundation** Cordell Bank NMS (NOAA) **DJ&T** Foundation **Greater Farallones Association** Farallones National Wildlife Refuge Faucett Catalyst Foundation **Firedoll Foundation**

Point Blue

for a healthy planet.

Greater Farallones NMS (NOAA) Hellman Family Foundation Marisla Foundation **McCaw Family Foundation Moore Family Foundation** National Fish and Wildlife Foundation National Marine Sanctuary Foundation Oikonos Ecosystem Knowledge **Point Blue Anonymous Donors Resources Legacy Fund Foundation** Restoration Center (NOAA) United States Fish and Wildlife Service Point Blue Staff, Interns and Volunteers