From marine terrestrial interactions to the "warm blob": integrating land-oceanatmospheric research in a coastal observatory framework



Brian Hunt, Jennifer Burt, Wiley Evans, William Floyd, Ian Giesbrecht, Alexander Hare, Margot Hessing-Lewis, Jennifer Jackson, Colleen Kellogg, Kira Krumhansl, Allison Oliver, Suzanne Tank

# Hakai Science on the Coastal Margin



Photo: Grant Callegari

### HAKAI INSTITUTE GUIDING PRINCIPLES

### Long Term Ecological Research

**Place Based** 

**Integration Across Disciplines** 

Ecology that Includes Human Activity

Local Analysis -> Regional Insights -> Policy

### BRITISH COLUMBIA COASTAL OBSERVATORIES



### TWO PRIMARY OBSERVATORIES





### **O**CEANOGRAPHIC CONTEXT

#### Standard Positions of Upwelling Index Calculations



Data source: www.pfeg.noaa.gov/products/



CLIMATE / OCEAN DRIVERS, RESEARCH AXES & CROSSCUTTING THEMES



### **ROUTINE FIELD OBSERVATIONS**

#### WATERSHEDS



#### • Dedicated field teams

- High frequency
- Year round

### **N**EARSHORE & ESTUARIES



### COASTAL OCEANS



## AUTONOMOUS SENSOR NETWORK



#### Calvert Island:

- 16 meteorological stations
- 14 stream sensor nodes depth, T°C, conductivity, fDOM, pCO2.
- 3 terrestrial sensor nodes

### **Calvert Island Observatory**



### 1. MARINE-TERRESTRIAL INTERACTIONS



### FRESHWATER & OCEAN PHYSICS

#### Water column salinity profiles & freshwater discharge



## GLOBALLY SIGNIFICANT DOC YIELD

### DOC yield



NEWS2 model (Mayorga et al. 2010, Beusen et al. 2009)

Global Average ~5,890 kg C km<sup>-2</sup> yr<sup>-1</sup>

## GLOBALLY SIGNIFICANT DOC YIELD

### DOC yield



NEWS2 model (Mayorga et al. 2010, Beusen et al. 2009)

Global Average ~5,890 kg C km<sup>-2</sup> yr<sup>-1</sup>

### TERRESTRIAL CONTRIBUTIONS TO THE MARINE FOOD-WEB



### UPTAKE OF TERRESTRIAL CARBON BY PLANKTON



### Marine contribution to Kwakshua carbon pool

Annual average phytoplankton biomass of 34 tons C.km<sup>-2</sup>



### Annual average phytoplankton carbon production ~ 500 tons C.km<sup>-2</sup>.yr<sup>-1</sup>

### A key area of research in the Pacific Temperate Rainforest Domain

Ongoing measurement of key variables required:

- Freshwater discharge
- DOC load
- Biochemical tracers

**Process studies** 

- Pathways of terrestrial material into the marine food-web
- Response of marine-terrestrial to changing climate

### 2. The warm blob



2014 / 15 winter ~ 2°C warmer than 2013 /14

## FRESHWATER & OCEAN PHYSICS

Water column Temperature profiles & freshwater discharge
➢ High freshwater input during winter 2014/2015



## **Response: Food-web Base**



### **RESPONSE: PHYTOPLANKTON SIZE STRUCTURE**



- Reduced microphyotplankton in 2015
- 2015 Fall bloom dominated by nano and pico size classes

## **RESPONSE: MICROBIAL COMMUNITIES**



Science on the Coastal Marain

## **RESPONSE: MICROBIAL COMMUNITIES**



Relative abundance of ammonia-oxidizing archaea (Thaumarchaeota) in Fitz Hugh Sound in summer and fall of 2013 (dark blue) and 2014 (light blue).

Science on the Coastal Marain

## **RESPONSE: MACROPHYTES**



## SUMMARY OF WARM BLOB IMPACTS

# Central Coast conditions in 2015 dominated by the warm Blob impact

- ↑ Temperature
- $\downarrow$  Salinity
- $\downarrow$  Winter nutrient renewal
- ↓ Phytoplankton biomass (diatoms)
- ↑ Dominance of small phytoplankton size classes
- ↑ Zooplankton biomass
- ↑ Zooplankton grazing impact top-down control
- $\rightarrow$  Shift in Fall microbial community
- $\downarrow$  Macrophyte biomass



Integrated observatory platforms offer a new level of understanding of ecosystem function, establishing connections between adjacent systems and organisms, and identifying mechanisms behind response to perturbation.

## Extra slides

# Central Coast



## **ROUTINE FIELD OBSERVATIONS**





- Temperature
- Salinity
- Turbidity
- PAR
- Fluorescence



- Nutrients
- Oxygen
- Stable isotopes
- pCO2, TCO2
- Phytoplankton
- Bacteria & Viruses

![](_page_30_Picture_15.jpeg)

Larval fish

### Sensor Network

![](_page_30_Picture_18.jpeg)