Coastal observation systems to monitor physical, chemical and biological parameters

H. Yamazaki¹, E. Masunaga², S. Gallager³,
M. Tanaka¹, M. Takeuchi¹, K. Amakasu¹,
K. Yamaguchi⁴ & H. Hayato¹

¹Tokyo University of Marine Science and Technology ²Ibaraki University ³Woods Hole Oceanographic Institution ⁴Tokyo Metropolitan Government

> PICES 2016 Session13 @ San Diego November 7, 2016

Topics

- YODA Profiler
- SUNTANS (Hydrodynamics model)
- JEDI System
- Cabled Observatory (OCEANS)
- A new AUV (MEMO-pen)

New tow-yo instrument designed for shallow areas

High resolution data from YODA

High resolution data from YODA

Turbulence from YODA

<u>Conductivity → Turbulent intensity</u>

$dC/dz \rightarrow \epsilon W/kg$

Assumptions:

- 1. The rate of turbulent kinetic energy dissipation and temperature gradient follows a joint lognormal pdf.
- 1. Conductivity signals follow temperature signals.
- 2. The rate of turbulent kinetic energy dissipation and conductivity gradient follows a joint lognormal pdf.

CTD + Phytoplankton + Turbulence

Internal bores

Internal bores

1 wave period

Numerical simulation: SUNTANS (Fringer et al., 2006)

2 dimensional SUNTANS

Distance [m]

dt = 1s $\sigma = semidiurnal$ U = 0.2 m/s

Numerical Results

Temperature and current time series at 50 m depth

Temperature and current in the transect line

Simulation (SUNTANS)

Vortex (observation)

Data observed from high-resolution the mooring survey

Deeper area

Distance from shore [km]

"What does happen when the receding bore runs into the next run-up bore?"

Observation

Numerical simulations

River plume mixing associated with internal bores.

"How internal bore influence surface river plume mixing?"

River plume and internal bores

Sept. 2013

Vertical diffusivity Kz ~ O(10⁻⁴) m²/s

River plume and Crash mixing

Mixing and sediment resuspension induced by internal bores

Numerical modeling

Observational and Numerical results

Sediment resuspension model works very well.

Joint Environmental Data Integration System: JEDI System

JEDI System HOMEPAGE http://www2.kaiyodai.ac.jp/~hide/JEDI/index.html

Specific Objectives:

To characterize biodiversity dynamics of plankton in Kuroshio-affected habitats using a novel approach that combines numerical models with field observations obtained with advanced sensing technologies. Oshima Coastal Environmental data Acquisition Network System (OCEANS)

EMP-1

PTZ camera

Cable to shore lab

ADCP

Electronics node

The location of OCEANS

Cable Pwr: ON Current: 5.93 ma Shore GFD: 50 M Ω Node GFD: 50 M Ω

Node: Temp: 39.8 degC Humid: 24.7 % Press: 1085 mbar Shore: Temp: 28.2 degC Humid: 47.8 % Press: 1012.7 mbar

Continuous Plankton Imaging and Classification System

3 in-focus copepods taken with CPICS imaging system. (Continuous Plankton Imaging and Classification System) FOV: 11 x 12mm WD: 15 cm Resolution: 2 μm

Three copepods with yellow Region of Interest (ROI) pixels extracted in real-time by FPGA (frame programmable gate array)

Example data

Observed data vs. SUNTANS

Oscillation of waves

 $\sigma = 7.3 \times 10^{-5} \text{ rad/s}$ a = 0.5 m 2. Run with M2 tides $\sigma = 1.4 \times 10^{-4} \text{ rad/s}$ a = 0.5 m

Submitted to Journal of Physical Oceanography

SUNTANS Results: K1 forcing

21 degrees isothermal displacement

SUNTANS Results: M2 forcing

21 degrees isothermal displacement

Step = 240

Design Concept of the AUV

Plankton Microscope Camera

Slow Cruising Speed

Cruising-Style

Operation with CO

Microstructure Measurement System

Low-Vibration

Low-Vibration Propulsion System

Low-Vibration Propulsion System

- High Rotation Rate Small Motor
 Avoid Low Frequency Vibration from a Rotating Propeller and a
 - Motor
- Eliminate the Spiral Stream by a Rotating Propeller
- Drawing Surrounded Water to Increase the Thrust Efficiency
- Introduce Direction Control Surface (DCS)

TurboMAP-L

TurboMAP-Glider

(2

STATE OF STREET

CPICS and TurboMAP

Plankton Microscope Camera with a Real-time Processing and Archiving System

Turbulent shears, Temperature, Conductivity (Salinity), Water pressure (Depth), Acceleration along X/Y/Z axes, Fluorescence and Turbidity

Take home messages

 New observational systems are uncovering new processes.

 A combination of observation and numerical model is a powerful tool to study coastal ocean processes.

Thank you for your attention!