

Linear and non-linear responses of marine and coastal fish populations to physics and habitat: a view from the virtual world

Kenneth Rose Dept. of Oceanography & Coastal Sciences Louisiana State University

https://beya.io/2016/03/complicated-vs-complex-and-why-it-matters/

 $X_{t+1} = r \cdot X_t (1 - X_t)$

http://en.wikipedia.org/wiki/Logistic_map

100 generations r 0 to 4

Emergent properties are those that arise through interactions among smaller parts that alone do not exhibit such properties

Example 1 - Shrimp

Roth, B.M., K.A. Rose, L.S. Rozas, and T.J. Minello. 2008. Marine Ecology Progress Series 359: 185-202

Coastal Louisiana Trends: 1956-2050

Land Loss 1956-2000 Predicted Land Loss 2000-2050

Land Gain 1956-2000 Predicted Land Gain 2000-2050

Linkages between marsh habitat and nekton abundance

Sources: Minello and Webb 1997, Minello and Rozas 2002, Zimmerman and Minello 1984

Study locations

Creating 3D Marshscapes

Inundation

Model

Corroboration: Density Patterns

& CO4

Landscape influences shrimp export...

Do these marshes function similarly?

Example 2: Spiny Lobster

Butler, M.J., J.H. Hunt, W.F. Herrnkind, K.A. Rose, and T. Dolan. 2005. Ecological Applications 15:902-918.

Individual-based Population Dynamics

Massive Habitat Loss

- Blue-green algal blooms killed about 60% of all sponges in bloom-impacted areas
- 1991: November 15 through January 2

• 1992: October 1 through January 27

Predicted Effect of Bloom on Lobster Shelter Use Perturbed Region

Predicted Effect of Habitat Change on Juvenile Lobster Abundance

Example 3: Croaker

Rose, K.A., S. Creekmore, D. Justic, P. Thomas, J.K. Craig, R. Miller Neilan, L. Wang, Md S. Rahman, and D. Kidwell. In review. Modeling the population effects of hypoxia on Atlantic croaker (*Micropogonias undulat*us) in the northwestern Gulf of Mexico: Part 2 – Realistic hypoxia and eutrophication

Model Overview

- Spatially explicit, IBM
 - Follows 7 stages to age 8
 - September 1 birthday
 - Model year begins Sept. 1
 - Each year 365 days long
- Hourly processes
 - Growth
 - Mortality
 - Reproduction
 - Movement (routine & avoidance)
- Environmental conditions simulated on a 2-D spatial grid
 - Climatological temperature
 - Climatological surface Chl-a
 - Dissolved oxygen from 3-D hydrodynamics-WQ model

Model Grid

- Idealized 300 x 800 cell grid (1 km resolution)
- Bottom elevation for each cell is truncated beyond 100 m

Temperature

Chlorophyll-a

(mg/m³, sqr-transformed)

Dissolved Oxygen

June 15th

July 16th

August 16th

Direct Effects of Low DO

• Exposure-effects sub-models (Neilan and Rose 2014)

- Estimated from experiments (Thomas and Rahman 2012, Rahman and Thomas 2012)
- Only imposed on late juveniles, age-1, and age-2

Avoidance (July 16th)

25% Reduced Nutrient Loadings

Example 4: Red Snapper

Campbell, M.D., K.A. Rose, K. Boswell, and J.H. Cowan. 2011. Ecological Modelling 222:3895-3909.

Introduction

Coastal Louisiana Habitats Petroleum Platforms Artificial Reef Communities Construction/Deconstruction

Dismantling unused oil rigs could boost Louisiana's artificial reef program

By Richard Thompson, Times-Picayune Sunday, October 24, 2010

What is the effect of increasing the number and spacing of artificial reefs on:

- Species movement patterns
- Species abundance and productivity
- Prey densities around platform halo effect

Spatial Grid

Designate Habitat

- 90 x 90 cells , 324 km²
- Each cell is 4000 m²
- Cells are rig or benthic

Prey Distribution

- 5 prey types: copepods, shrimp, crabs, pelagic fish, and benthic fish
- Prey population on each cell updated hourly with logistic

<u>Temperature</u>

- Assumed to be constant across the grid
- Function of calendar day

Fish Community and Species Types

Primary Community:

- Red snapper, pinfish, Atlantic croaker
- Movement, consumption, growth
- Mortality and recruitment

Competitor and Predator:

- Bluefish
- Movement, consumption, and predation
- Influence on primary community

Predator Only:

- Jack spp.
- Movement and predation
- Influence on primary community

Photos courtesy of - <u>http://floridasportfishing.com</u> * Not to scale

Hourly positions during four days in year 20 of a 16 AR simulation red snapper (red), pinfish (green), Atlantic croaker (light blue), bluefish (blue), jack-like species (black)

Red snapper	Pinfish	Atlantic croaker	Blue fish	Jack
		8000 6000 6000 9000		* * * * * * * * * * * *
9			1. 10 - 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14	1. 1
	建成设验 提升资源 指数基金 错复保持		1.9 · 19 3.1 50 3.1 50 5.5 50 0	1.4.4 2.4.4.4 2.4.4.4.4
· · · · · · · · · · · · · · · · · · ·		2 - + \$ 2 + \$ 2 + \$ 8 \$	* * * * * * * * * * * *	

Insights?

- Capabilities for assessing habitat effects on upper trophic level dynamics seems:
 - Limited
 - Stalled: from capacity to abundance

• Behavioral movement drives the results

Insights?

 Integration of spatial and temporal scales across variables and linking to processes appears "arbitrary"

- We confuse inputs and emergent outputs?
 - Rule or random walk based approaches are inputs
 - Without considering the energetics and other costs of altered movements, we show that the code works

Insights?

- Decision-making
- Adaptive
- Costs
- Model coupling
- Validation data

Watkins and Rose. 2013.