PICES 2016 Annual Meeting

Nov. 8. 2016

Effects of ocean acidification on growth of juvenile Japanese surf clam *Pseudocardium sachalinense*

<u>M. Hayashi¹</u>, R. Suwa¹, C. Kishida¹, Y. Watanabe¹, Y. Minowa¹, K. Nishida², A. Suzuki³ and Y. Nojiri⁴

¹Marine Ecology Research Institute, ²The University Museum, The University of Tokyo, ³National Institute of Advanced Industrial Science and Technology, ⁴Hirosaki University

- Introduction
- Experimental design
- Measurement 1: Shell growth
- Measurement 2: Stable carbon isotope
- Conclusion
- Future study

• Introduction

- Experimental design
- Measurement 1: Shell growth
- Measurement 2: Stable carbon isotope
- Conclusion
- Future study

Motivation

○ Marine calcifiers are sensitive to OA.
 → Many previous studies

↓ However

Effects of OA on fishing industry

Poor knowledge

O High-latitude calcifying communities

will suffer the lower aragonite saturation state (Ω).

- ↓ However
 Effects of OA
 on cold-water species
 ➡ Poor knowledge
- Poor knowledge

Target species

Japanese surf clam Pseudocardium sachalinense → The clam is important in local fisheries in northern Japan.

Tomakomai city in 2013 Annual catch: 680 tons Annual value of the landings: About \$ 3 million

Stable carbon isotope ($\delta^{13}C$)

In molluscan shells, δ^{13} C depends on both environmental (δ^{13} C of dissolved inorganic carbon (DIC) in seawater, temperature) and internal (metabolism) condition.

Measure $\,\delta^{13}\mathrm{C}$ of molluscan shell and DIC of seawater

It might be possible to estimate the contribution of acidified seawater to calcification.

- 1. To study the effects of OA on growth in juvenile Japanese surf clam
- 2. To study the contribution of acidified seawater on shell calcification by δ^{13} C

- Introduction
- Experimental design
- Measurement 1: Shell growth
- Measurement 2: Stable carbon isotope
- Conclusion
- Future study

Materials and Methods

Experimental animal: Juvenile Japanese surf clam (Yearling clam: Produced seeds in MERI)

1L of *Pavlova lutheri* $(4 \times 10^{6} \text{ cells/mL})$ of phytoplankton feed was provided twice a day.

Levels of pCO₂ (µatm): 400 (Control, ambient seawater), 600, 800, 1000, 1200

Water temperature: 17°C

Experimental duration: 20 weeks

© 2015 Marine Ecology Research Institute.

pCO₂ Control system

pCO₂ Control system

Water parameters during experiments

Treatment	400	600	800	1000	1200	
pCO ₂	<mark>405.4</mark>	<mark>608.4</mark>	<mark>806.3</mark>	<mark>1014.1</mark>	<mark>1211.1</mark>	
(µatm)	±45.0	±51.1	±67.1	±87.1	±118.8	
рН	<mark>8.134</mark>	<mark>7.978</mark>	<mark>7.868</mark>	7.773	<mark>7.692</mark>	
	±0.021	±0.019	±0.023	±0.030	±0.038	
W. Temp.	17.1	<mark>17.1</mark>	17.1	17.1	17.1	
(°C)	±0.1	±0.1	±0.1	±0.2	±0.1	
DO	<mark>8.01</mark>	<mark>8.00</mark>	<mark>8.02</mark>	<mark>8.03</mark>	<mark>8.05</mark>	
(mg/L)	±0.21	±0.22	±0.21	±0.22	±0.23	
Salinity	<mark>32.096</mark> ±0.594					
TA (µmol/kg)	<mark>2182.4</mark> ±37.7	i Kolume: <mark>Mean</mark> ±SD				

- Introduction
- Experimental design
- Measurement 1: Shell growth
- Measurement 2: Stable carbon isotope
- Conclusion
- Future study

Sampling & measurement methods

O Sampling schedule
 Whole body weight, Shell length,
 Shell width, and Shell height
 ➡ Every 5 weeks

Shell length Shell height

Shell thickness of external margin, Shell weight (wet/dry), and Soft tissue weight (wet/dry) ➡ After the experiment

O Measure of shell thickness
 ➡Interval: 1mm (on measuring line)
 Determined with a digital caliper

1cm

External

margin

Results of growth rate

Results (End of the experiment)

Treatment	400	600	800	1000	1200
Wet weight of soft tissue (g)	0.94±0.45	1.06±0.46	1.01±0.27	0.95 ± 0.30	0.89±0.30
Dry weight of soft tissue (g)	0.19±0.10	0.21±0.09	0.20 ± 0.06	0.19 ± 0.06	0.17±0.06
Wet shell Weight (g)	1.31±0.55	1.42±0.55	1.24±0.31	1.17±0.34	1.06±0.32
Dry shell Weight (g)	1.21±0.51	1.31 ± 0.53	1.14±0.29	1.07 ± 0.31	0.94±0.29
Thickness of external margin (mm)	0.72±0.14	0.66 ± 0.09	0.62±0.03*	0.55±0.03**	0.56±0.06**

※ Mean±SD (N=10, Bold: N=9), **P<0.01, *P<0.05</p>

Results of shell thickness

Results of shell thickness

Nonparallel regression slopes (ANCOVA test for parallel slopes, P < 0.01)

Shell thickness at a region that grew during experiments thinned in a pCO_2 -dependent manner.

Discussion

O Shell thickness at a region that grew
 before experiments
 ➡ Almost no change

Almost no change

 O Shell thickness at a region that grew during experiments
 ➡ Thinned

Effects of OA: Inhibition of shell formation > Shell dissolution

- Introduction
- Experimental design
- Measurement 1: Shell growth
- Measurement 2: Stable carbon isotope
- Conclusion
- Future study

Methods

- O Stable carbon isotope composition (δ^{13} C) of the shells collected from the external margin of the outer shell layer
- O δ^{13} C of DIC in seawater sample

External margin

Determined with a Macromass Isoprime mass spectrometer

Results of $\delta^{13}C$ analysis

Discussion

The influx of acidified seawater into the calcification fluid is the same as that of control seawater.

⁹ The decrease in CO₃²⁻ (which is necessary for calcification) in the calcification fluid might induce a thinner shell formation.

Effects of OA:

In acidified seawater, Japanese surf clam might have a poor pH regulation of the calcification fluid.

- Introduction
- Experimental design
- Measurement 1: Shell growth
- Measurement 2: Stable carbon isotope
- Conclusion
- Future study

Conclusion

- No significant effect of elevated CO₂ on growth rate.
 ➡ Large variations of growth in the yearling shell
- 2. Shell thickness at a region that grew during experiments thinned in a pCO₂-dependent manner.
 ➡ Inhibition of shell formation
- 3. δ^{13} C of the shells was strongly dependent on δ^{13} C of seawater DIC.

- Introduction
- Experimental design
- Measurement 1: Shell growth
- Measurement 2: Stable carbon isotope
- Conclusion
- Future study

Future study

O Investigation into the strength of the shell

- Impacts on predation
- O Experiments in other species
 - Effects of OA on growth of common scallop
 Patinopecten yessoensis

(Important in local fisheries in northern Japan)

From Aomori prefectural government web site

Thank you for your attention!

URL: item. rakuten.co.jp

URL: marukyosuisan.com

Poster presentation:

No.11240 "The combined effect of high pCO₂ and warming on reproduction of Japanese whiting *Sillago japonica*"

Acknowledgements:

This work was supported by JSPS KAKENHI Grant Number JP12345678.

