Respiration and enhanced water acidification in the hypoxic zone off the Changjiang estuary #### Jinwen Liu Third Institute of Oceanography, SOA, Xianmen, China State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China 近海海洋环境科学国家重点实验室(厦门大学) # Highlights • Hypoxia zone observed in the subsurface water off Changjiang estuary in August 2011. • Estimate the roles of the aerobic respiration on hypoxia development. Evaluate the water acidification or pH drawdown enhanced by aerobic respiration ### Outline #### > Introduction: About coastal hypoxia The mechanisms cause hypoxia Hypoxia drawdown the pH #### > Study area and methods #### > Results: Hypoxia zone observed in the subsurface water off Changjiang estuary in August 2011. The restoration of the hypoxia in short time scale in summer was observed. #### **Discussions:** Roles of aerobic respiration on hypoxia development. The role of Taiwan Warm Current on hypoxia formation. Aerobic respiration enhance the acidification #### **Conclusions** ### Spreading hypoxia in marine ecosystems Global distribution of 400-plus systems that have scientifically reported accounts of being eutrophication-associated dead zones. (D íz & Rosenberg, 2008) Hypoxia has become a world-wide environmental problem in the global coastal ocean and got more and more attentions in recent decades. ### Summer bottom hypoxia off the Changjiang Estuary The hypoxia area off the Changjiang estuary (Li et al., 2002), the area of hypoxia was more than 13700 km² Seasonal hypoxia off the Changjiang estuary! Bottom hypoxic zones off Changjiang estuary from 1959 to 2011 (Office of Integrated Oceanographic Survey of China, 1961; Tian et al., 1993; Wang and Wang, 2007; Li et al., 2002; Xu, 2005; Wei et al., 2007; Wang, 2009 and this study) # The mechanisms cause hypoxia DO replenishment equilibrium DO consumption #### Two essential conditions for formation of hypoxia: - > Stratification of the water column - DO consumption by respiration (Li et al., 2002; Chen et al., 2007; Wei et al., 2007; Rabouille et al., 2008; Wang, 2009; Zhu et al., 2011). #### Others: - > Geomorphology and water circulation patterns (Wang, 2009) - > Bottom water residence time (Rabouille et al., 2008) - > Temperature (Chen et al., 2007) - River discharge (Zhu et al., 2011) - > Sediment DO consumption (Cai et al., 2014) # The aerobic respiration mediated pH drawdown $$(CH_{2}O)_{106}(NH_{3})_{16}H_{3}PO_{4} + 138O_{2} \longrightarrow 106CO_{2} + 122H_{2}O + 16HNO_{3} + H_{3}PO_{4}$$ $\downarrow H_{2}CO_{3}$ $\downarrow HCO_{3}^{-} + H^{+}$ $\downarrow DH$ $\downarrow CO_{3}^{2-} + H^{+}$ The consumption of DO and decline in pH is associated! ### Study area off the Changjiang estuary Fig.1 Map of the Changjiang estuary showing the sampling stations in Aug. 2011, The trajectory of the typhoon "Muifa" (light blue line) during 5-7th August 2011 and the sampling locations of the cruise carried out during 15-24th August 2011. # Results: ## Short summary 1 - Hypoxia zone observed in the subsurface water off Changjiang estuary in August 2011. - The process of hypoxia formation were observed in August 2011. In short time scale, strong events such as typhoon have significant impact on the maintain of hypoxia ### **Discussions:** ➤ Roles of aerobic respiration on hypoxia development ➤ The role of Taiwan Warm Current on Hypoxia formation time. > Aerobic respiration enhance the ocean acidification # Three end member mixing model Table 2 Summary of the end-member values of the cruise in August 2011. | End- | θ | S | DIC | TA | DIN | DIP | Si(OH) ₄ | |---------|------|------|--------------------------|--------------------------|------------|------------|---------------------| | members | (°C) | | (µmol kg ⁻¹) | (µmol kg ⁻¹) | (µmol L-1) | (µmol L-1) | (µmol L-1) | | СР | 25.7 | 21.0 | 1920.0 | 2106.0 | 59.0 | 1.03 | 52.0 | | ESW | 29.2 | 33.4 | 1991.0 | 2286.0 | 0.1 | 0.02 | 2.0 | | EDW | 18.9 | 34.7 | 2018.0 | 2284.0 | 3.69 | 0.55 | 22.0 | θ and S denote the potential temperature and temperature. CP, ESW and EDW are represented the Changjiang plume water, ECS offshore surface water and ECS offshore deep water respectively. $$f_{CP} + f_{ESW} + f_{EDW} = 1$$ $$f_{CP} \theta_{CP} + f_{ESW} \theta_{ESW} + f_{EDW} \theta_{EDW} = \theta_{in \ situ}$$ $$f_{CP} S_{CP} + f_{ESW} S_{ESW} + f_{EDW} S_{EDW} = S_{in \ situ}$$ (2) $$(3)$$ f_{CP} , f_{ESW} , f_{EDW} : percentage of each members θ_{CP} , θ_{ESW} , θ_{EDW} : the temperature of each members S_{CP} , S_{ESW} , S_{EDW} : the salinity of each members $$V_{cons.} = f_{CP} V_{CP} + f_{ESW} V_{ESW} + f_{EDW} V_{EDW}$$ (4) $V_{cons.}$: conservative values of any variables V_{CP} , V_{ESW} and V_{EDW} : concentrations of three end-members waters for this variable $$\Delta V = V_{meas.} - V_{cons.} \tag{5}$$ ΔV : difference between the conservative ($V_{cons.}$) and measured ($V_{meas.}$) concentrations The correlations between \triangle DIC and AOU (a), \triangle DIN and \triangle DIP (b), AOU and \triangle DIP (c), and \triangle pH_T and Do concentration (d). All data collected from the August cruise with depth > 10 m were selected. The solid lines are the simulated correlations of our results. The estimated linear regressions with r² and p values are also showed. - Both of these slopes were well coincided with the Redfield ratios which were 0.77 and 138 for ΔDIC/AOU and AOU/ΔDIP respectively. These results indicated that aerobic - The Piration of 1948 Anisphania phocess clusing the Resiphania Process Resipha ### Question? The hypoxia in August: Typhoon "Muifa" passed on 2011-8-7 Hypoxia first observed on 2011-8-24. Hypoxia development time is less than 20 days hoCR: 4.0 \pm 1.6 μ mol O₂ L⁻¹ day⁻¹ Indicted: the hypoxia is developed base on low DO concentration water. ## Short summary 2 - The aerobic respiration is the main process during the hypoxia development and caused the variations of DIC, DO and nutrients concentrations in the subsurface water - The subsurface water with lower DO concentration comes from Taiwan Warm Current and its higher aerobic respiration rate are the two essential conditions cause the summer hypoxia off Changjiang estuary. ### **Discussions:** ➤ Roles of aerobic respiration on hypoxia development ➤ The role of Taiwan Warm Current on Hypoxia formation. Aerobic respiration enhance the water acidification - The offshore water was assumed to be the source for the inner and middle shelf waters - It was equilibrated with the atmosphere and could reflect the changes of atmospheric CO₂. | salinity | 33.27 | temperature | 26.71 °C | |-----------|------------------------------|-------------------------------------|------------------------------| | pressure | 10.47 db | TA | 2228.0 μmol kg ⁻¹ | | | | | | | DIC | 1937.3 μmol kg ⁻¹ | [NO ₃ +NO ₂] | 0.99 μmol kg ⁻¹ | | phosphate | 0 μmol kg ⁻¹ | silicate | 3.5 μmol kg ⁻¹ | | pCO_2 | 420 ppm | pH_T | 8.05 | - > Keep: salinity, nutrients, pressure, CR rates constant - \triangleright Temperature and CO_2 : Pre-industry:280 ppm, T-0.76°C Year 2100 :800 ppm, T+4°C Present day: 420 ppm, T °C - DIC $_{PI} = 1859.2 \mu mol \ kg^{-1}$ - DIC_F = $2030.7 \mu mol \ kg^{-1}$ - TA:O = 17/138; DIC:O = -106/138 The relationships between subsurface DO and pH under pre-industrial (or PI, light blue dashed line), present (or P, dark solid line) and future (or F, red dashed line) CO_2 condition and temperature. The changes of temperature and CO_2 levels are according to IPCC (2007). pH drawdown due to uptake of anthropogenic CO_2 (or ocean acidification, OA), respiration (Resp.) and weakening carbonate buffer capacity (BC) were shown respectively. In the model, all the data points from the survey in August 2011 with salinity > 31, depth > 10m were presented. Assumed that CR was not influenced by temperature, and under DO-depleted scenarios. ### Conclusions - ➤ Hypoxia zone observed in the subsurface water off Changjiang estuary in August 2011. - The processes of hypoxia formation were observed in August 2011. - ➤ The aerobic respiration is the main process during the hypoxia development. - The subsurface water with lower DO concentration comes from Taiwan Warm Current and its higher aerobic respiration rate are the two essential conditions cause the summer. - > Hypoxia formation time in summer is less than 20 days - In the future, more pH_T -drops would be caused by elevated aerobic respiration activity. The coastal water would be more vulnerable to ocean acidification. # Thanks for your attention!