Seascape ecology of glass sponge reefs

fine scale measurements of habitat heterogeneity and its relationship to community structure

Stephanie K. Archer Janet Mossman Anya Dunham

Fisheries and Oceans Canada Pêches et Océans Canada

Glass sponge reefs

- Built similarly to coral reefs
- Three species
 - Aphrocallistes vastus
 - Farrea occa
 - Heterchone calyx
- Currently known only in the Northeast Pacific
- In BC
 - Hecate Strait
 - Strait of Georgia
 - Chatham Sound

Sponges act as foundation species

Dayton 1972

Create habitat resulting in

- ↑ Diversity
- ↑ Abundance
- ↑ Distribution

Sponges act as foundation species

Sponges provide structure

Dead sponges also provide structure

Do sponges interact with the community in other ways?

Is the community associated with live sponge different than that associated with structure?

Strait of Georgia glass sponge reefs

Strait of Georgia glass sponge reefs

Howe Sound (QC Channel)

100 m

Mud

Live Reef Sponge

Dead Reef Sponge

Other sponges Non-sponge sessile biota

10cm

0 None

 $0 < x \le 10\%$ Low

10 < x ≤ 35% Medium

x > 35% High

Chu and Leys. 2010. MEPS

Sponges (live and dead) increase species richness and abundance

Dead Reef Sponge Cover

Detection rates in high sponge cover

Detection rates in high sponge cover

Average Image larger when sponge is present

No sponge: 0.72 m² Dead Sponge: 1.16 m² Live Sponge: 1.23 m²

ROV further off bottom in areas of sponge cover

Species Associations

- "Species" observed ≥ 5 individuals
- Group-standardized correlation of general abundance (Cáceres and Legendre 2009)
 - -1 to 1, 0 = no preference
 - Comparable across groups of different sizes

Species Associations

- 27 "species" observed ≥ 5 times
- 13 groups exhibited significant habitat associations
- Ophiuroidea significantly associated with no structure
- 5 groups associated with structure
- 3 groups associated with live sponges
- 2 groups associated with dead sponges
- Spot prawns and small shrimp associated with low live sponge & high dead sponge cover

Sebastes sp.

Live sponge

Dead sponge

Live sponge Associations

Chorilia longipes Ceramaster patagonicus

Pandalus platyceros

Pandalus platyceros

Dead sponge

Munida quadrispina

Conclusions

- Characterizing the community structure in high complexity areas difficult
- Biogenic structure does influence community structure
- Live sponges influence community structure beyond influence of structure provided

Conclusions

- Rockfish display a strong preference for live sponge
- Squat lobsters are common
 - Significant preference for dead sponge
- Spot Prawns not associated with areas of high sponge cover

Questions?

