Resolving biogeographic patterns in the deep sea using species distribution modeling

- Samuel Georgian
- Marine Conservation Institute Seattle, Washington, USA

- 1. What niche space does *L. pertusa* occupy in the Gulf of Mexico?
- 2. What is the likely distribution?
- 3. Can we predict occurrences accurately enough to inform field operations?

Maxent Modeling

MARINE Conservation Institute

- Broad scale model: 25 m
- Fine scale models (7 sites): 5-8 m
- Variables:
 - -Rugosity
 - -Slope
 - -Eastness/Westness
 - -Curvature (plan/profile/tangential)
 - -Seismic (hard bottoms)
 - -Topographic Position Index (fine/broad scales)
 - -Omega aragonite
 - -POC flux

Broad scale (25 m) model

PICES WG32 – November 2nd 2016

Viosca Knoll 826 model

Importance of hard substrate

- Broad scale model
- Location of hard bottom polygons from BOEM seismic and geologic data analysis
- Model contribution: 43%

- Fine scale model
- Binning of high-resolution seismic reflectivity survey at each site
- Average model contribution: 25%

- Regularization parameter tuned
 - Controls model complexity
- Model performance assessed via:
 - Training data (75%)
 - Testing data (25%)
 - Ground-truthing data
 - Independent AUV survey
 - 7 random transects over site
 - 3,000+ images analyzed

Transferability of the model

Site	AUC		Spear-	Overlap
	'Sentry'	Ground truth	man's ρ	(I)
Viosca Knoll				
VK826	0.972	0.928		
VK862/VK906	0.961	0.881	0.813	0.891
Mississippi Ca	nyon			
MC751	0.926	0.769	0.256	0.456
MC885	0.952	0.847	0.564	0.714
Garden Banks				
GB535	0.958	0.891	0.643	0.895
Green Canyon				
GC354	0.914	0.820	0.550	0.782
GC234	0.878	0.742	0.643	0.721

Groundtruthing Viosca Knoll

Groundtruthing Viosca Knoll

Conclusions

- L. pertusa's distribution delineated with a few variables: substrate, terrain, depth
- Clear preference for elevated, irregular topography with hard substrate
- Not hard to get models that perform well, need independent validation and groundtruthing
- Default settings test well but do not transfer to new sites
- Likely many undiscovered L. pertusa sites in the Gulf of Mexico

Ecological speciation in the deep sea

- How is diversity in the deep-sea generated?
- Testing the depth-divergence hypothesis (Rex & Etter 2010)
- Key Questions:
- 1. Do closely related species of cold-water corals occupy distinct ecological niches?
- 2. Is niche divergence important in the evolution of these species?

Andrea Quattrini

- Resolution: 5, 25 m
- Variables:
 - -Rugosity
 - -Slope
 - -Eastness/Westness
 - -Curvature (plan/profile/tangential)
 - -Seismic (hard bottoms)
 - -Topographic Position Index (fine/broad scales)
 - -Omega calcite
 - -POC flux
 - -Dissolved oxygen
 - -Salinity
 - -Temperature
 - -Presence of seep

Genetically and morphologically distinct

Quattrini et al. 2013 Molecular Ecology

PICES WG32 – November 2nd 2016

Ecologically distinct?

Callogorgia niche space

Seep presence – 58.3% Calcite – 19.8% Salinity – 9.4% AUC=0.995±0.002 Depth – 70.6% Salinity – 10.7% Dissolved oxygen – 9.3% AUC=0.977±0.004

- MARINE Conservation Institute
- C. a. delta a non-seep organism with a clear seep preference
- C. gracilis and C. a. delta occupy distinct niches
- Our results support the depthdivergence hypothesis
- Depth or depth-related variables?
- Did ecology drive speciation, or did niches diverge after speciation?

Quattrini et al. 2013 Molecular Ecology

Acknowledgements

- NSF GRFP (Grant No. DGE-1144462), NSF GROW
- SICB Grants in Aid of Research
- NSF OA Grant to Cordes and Kulathinal
- GOMRI and ECOGIG
- BOEM and NOAA-OER (#M08PC20038)
- Temple University Dissertation completion grant
- Erik Cordes Temple University
- Andrea Quattrini Temple University
- Bill Shedd BOEM
- Kody Kramer BOEM

