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Biogeography of Lophelia pertusa

Erik Cordes
William Shedd

1. What niche space does L. pertusa occupy in the Gulf of Mexico?
2. What is the likely distribution?
3. Can we predict occurrences accurately enough to inform field 

operations?
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Maxent Modeling

• Broad scale model: 25 m
• Fine scale models (7 sites): 5-8 m
• Variables:

-Rugosity
-Slope
-Eastness/Westness
-Curvature (plan/profile/tangential)
-Seismic (hard bottoms)
-Topographic Position Index (fine/broad scales)
-Omega aragonite
-POC flux
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Broad scale (25 m) model

22.1%

33.6%

TPI (broad)
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Viosca Knoll 826 model

TPI (broad)
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Importance of hard substrate

• Broad scale model
• Location of hard bottom polygons from BOEM 

seismic and geologic data analysis
• Model contribution: 43%

• Fine scale model
• Binning of high-resolution seismic reflectivity survey 

at each site
• Average model contribution: 25%



PICES WG32 – November 2nd 2016 7

Model validation

• Regularization parameter tuned
• Controls model complexity

• Model performance assessed via:
• Training data (75%)
• Testing data (25%)
• Ground-truthing data
• Independent AUV survey
• 7 random transects over site
• 3,000+ images analyzed
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Transferability of the model
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Groundtruthing Viosca Knoll
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Groundtruthing Viosca Knoll
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Conclusions

• L. pertusa’s distribution delineated with a 
few variables: substrate, terrain, depth

• Clear preference for elevated, irregular 
topography with hard substrate

• Not hard to get models that perform well, 
need independent validation and ground-
truthing

• Default settings test well but do not transfer 
to new sites

• Likely many undiscovered L. pertusa sites in 
the Gulf of Mexico
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Ecological speciation in the deep sea

• How is diversity in the deep-sea generated?
• Testing the depth-divergence hypothesis (Rex & 

Etter 2010)

Key Questions:
1. Do closely related species of cold-water corals 

occupy distinct ecological niches?
2. Is niche divergence important in the evolution 

of these species?

Temple University
Erik Cordes
Andrea Quattrini
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Maxent Modeling

• Resolution: 5, 25 m
• Variables:

-Rugosity
-Slope
-Eastness/Westness
-Curvature (plan/profile/tangential)
-Seismic (hard bottoms)
-Topographic Position Index (fine/broad scales)
-Omega calcite
-POC flux
-Dissolved oxygen
-Salinity
-Temperature
-Presence of seep
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Genetically and morphologically distinct

Quattrini et al. 2013 Molecular Ecology
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Ecologically distinct?

C. gracilisC. a. delta
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Callogorgia niche space

Depth – 70.6%
Salinity – 10.7%
Dissolved oxygen – 9.3%
AUC=0.977±0.004

Seep presence – 58.3%
Calcite – 19.8%
Salinity – 9.4% 
AUC=0.995±0.002
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Ecological speciation in the deep sea

Two-tailed T-test,  p<0.001
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Identity test (ENM Tools)
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Background test (ENM Tools)
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Ecological speciation in the deep sea

• C. a. delta – a non-seep organism with a clear seep preference

• C. gracilis and C. a. delta occupy distinct niches

• Our results support the depth-
divergence hypothesis

• Depth or depth-related variables?

• Did ecology drive speciation, or did 
niches diverge after speciation?

Quattrini et al. 2013 Molecular Ecology
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