Nutrient fields reveal identity of ecosystems: A case study from the Bering Sea

Kirill Kivva

Russian Federal Research Institute of Fisheries and Oceanography (VNIRO), Moscow, Russia

Outline

- Introduction and rational
- Data and methods
- Oceanographic region delineation
- Multi-year mean seasonal dynamics
- Mean Si, N, and P draw-downs, ratios, NCP
- Future directions
- Conclusions

- Substantial fisheries; annual catch ≈2.5-5.0 mln t
- High rates of primary production

[Si-SiO₃], μ M at 2000 m (data: WOA'13)

- Substantial fisheries; annual catch ≈2.5-5.0 mln t
- High rates of primary production
- Production/respiration rates are essential for understanding of ecosystem functioning
- Despite this, nutrient time-series data and nutrient dynamics studies are local and sparse

Objective: to assess seasonal nutrient dynamics, nutrient drawdown ratios, and net community production (NCP)

What is known about temporal variability of nutrients in the BS?

100×100 km grid cells of the National Snow and Ice Data Center's Equal-Area Scalable Earth Grid (*Codispoti et al., 2013*)

Average winter and summer profiles of 'big N' in the Eurasian basin (*Codispoti et al., 2013*)

 ODV data collection (Schlitzer, 2016); data sources: NODC, BEST/BSIERP (USA), JAMSTEC (Japan), TINRO-Center (Russia)

Т	S	O_2	Si	N	Р
14026	13970	13978	6307	3713	5825

Number of stations per pentade per month, and total number of stations

Standard bio-statistical regions (*Shuntov*, 1988; *Volvenko*, 2003)

Approximate boundaries of 8 ecosystems of the BS (Coachman, 1990)

Marine regions for the Bering Sea shelf and slope (*Ortiz et al., 2012*)

Other region delineations: Allen and Smith, 1988; Baker and Hallowed, 2014; PAME, 2013; Piatt and Springer, 2007; ...

Are there any ecoregion schemes available for the BS?

- ODV data collection (Schlitzer, 2016); data sources: NODC, BEST/BSIERP (USA), JAMSTEC (Japan), TINRO-Center (Russia)
- 2. Averaging of data at 10 and 50 m in 1°×2° lat-lon bins (cells) for summer season (VII-IX)
- 3. Region delineation based on spatial distribution of clustered grid nodes
- 4. Multiyear mean monthly profiles of nutrients → multiyear mean ΔSi, ΔN, ΔP → ΔSi/ΔN/ΔP-ratios and net community (ecosystem) production

Results

Temperature, °C

Salinity

DO, µM

Distribution of T, S, and DO in summer (VII-IX)

Results

Distribution of Si-SiO₃, N-NO₃ and P-PO₄ in summer (VII-IX)

Results: region delineation

Results: region delineation

Results: regional dynamics

Seasonal dynamics of T, S, and DO in 3 regions

Result #1 Simple analysis of oceanographic data reveal regions with relatively distinct physical and biological processes

Results: seasonal nutrient draw-down

$$\Delta X = \int_{0}^{z_{0}} [X_{1}(z) - X_{2}(z)] dz$$

$$\Delta X = \sum_{0}^{z_{0}} [X_{1}(z) - X_{2}(z)]$$

Results: ΔSi/ΔN/ΔP-ratios

Results: ΔSi/ΔN/ΔP-ratios

- C:N:P-ratios in phytoplankton cells depend on all environmental factors (*Brzezinsky, 1985*)
- They largely depend on phylogenetic features (Quigg et al., 2003) and phenotypic response of cells (Finkel et al., 2006)
- Characteristic Si:N for diatoms is 0.8±0.3 (Sarthou et al., 2005)
- Characteristic N:P is 10.0±4.0 for diatoms (Sarthou et al., 2005) and 13.5±2.6 for dynoflagellates (Ho et al., 2003)
- Across ecosystems, N:P-ratios in phytoplankton vary at list within a factor of 10 (Geider, La Roche, 2002)
- Higher Si:N was reported for cells limited in N (*Geider, La Roche, 2002*) or labile Fe (*Demarest et al., 2011; Price, 2005*)

What controls $\Delta \text{Si}/\Delta \text{N}/\Delta \text{P-ratios}$ and what are expected ranges?

Results: region delineation

Result #2
ΔSi/ΔN/ΔP-ratios vary substantially due
to differences in phytoplankton
community composition and limitation
patterns

Results: net community production

 $(NCP = 0.0795 \cdot \Delta N \text{ [mmol N m-2 yr-1]}) [g C m^{-2} yr^{-1}]$

Results: region delineation

Result #3
Multi-year mean NCP in the Bering Sea varies between 26-81 g C m⁻² yr⁻¹

- Global geodetic grid creation with package dggridR (Barnes et al., 2017) – Icosahedral Snyder Equal Area Aperture 3 Hexagonal Grid
- Spatio-temporal averaging with Gaussian weighting function and truncation radius of 100 km (*Hatun et al.*, 2009):

$$w(d) = \exp\left(\frac{-d^2}{\tau^2}\right)$$

Schematic visualization of data

Better grid – Icosahedral Snyder Equal Area Aperture 3 Hexagonal Grid

Mean bathymetry in every grid cell based on GEBCO

Number of decades with data (decades with ≥3 stations)

Examples of areas with relatively good data coverage

Example of reconstructed seasonal cycle – silicate

Example of reconstructed seasonal cycle – nitrate

	South-Eastern Shelf	Northern Shelf	Northern Slope
ΔSi/ΔN	1.7	2.1	1.23
ΔΝ/ΔΡ	14	17	17
NCP	25.8	33.4	56.5

Result #4
Hexagonal grid perform quite well

Conclusion

- Combination of data from different sources brings synergetic effect
- Simple analysis of oceanographic data allow to delineate ecoregions
- ΔSi/ΔN/ΔP-ratios vary substantially in the region
- Multi-year mean NCP in the Bering Sea varies between 26-81 g C m⁻² yr⁻¹
- Hexagonal grid will be quite useful

Thank you for attention!

Kirill Kivva

Researcher
Russian Federal Research Institute
of Fisheries and Oceanography (VNIRO),
Moscow, Russia