

PICES-2017 Annual Meeting:

Environmental Changes in the North Pacific and Impacts on Biological Resources and Ecosystem Services

Sep 22 – Oct 1,2017 Vladivostok, Russia

S1: Science Board Symposium

Future projected impacts of ocean warming to potential squid habitat in the North Pacific

Irene D. Alabia¹, <u>Sei-Ichi Saitoh¹</u>, Hiromichi Igarashi², Yoichi Ishikawa², Norihisa Usui³, Masafumi Kamachi², Toshiyuki Awaji⁴ & Masaki Seito⁵

Introduction: Climate-driven changes in marine biodiversity

Cheung et al. 2014

Introduction: Squid as biological proxy of climate changes

North Pacific population is comprised of 2 seasonal spawning cohorts (winterspring and autumn) — Yatsu et al. 1997, 1998; Bower & Ichii 2005; Ichii et al. 2009

Responds quickly to the changes in the environment

Squid fishery occurs off a highly dynamic region (e.g. major currents & frontal systems) – Roden 1991; Talley et al. 1995; Yasuda et al. 2003; Polovina et al. 2006

Introduction: research rationale

Objective

Examine the squid potential habitat distribution patterns in response to future ocean warming and quantify its regional impact in the North Pacific

Significance of the study

- Baseline understanding of squid habitat responses to ocean warming
- Relevant insights to inform decisions amongst resource stakeholders

Data & Methods

Environmental variables	Source	Temporal Resolution	Source Resolution	Model AUC Contribution
Sea surface temperature	AVHRR-OI	monthly	25 km	0.8697
Sea surface salinity	MOVE-MRI	monthly	10 km	0.8203
Sea surface height	AVISO	monthly	25 km	0.8286
Net Primary Production	OSU	monthly	9 km	0.7501
Squid fishing locations	APITRC	monthly	May-July 2000-2010	
IPCC-5 Models	Country			Scenarios ^[5]
^[1] MIROC-ESM	Japan	monthly	0.2°x0.3°	RCP4.5 RCP6.0 RCP8.5
^[2] CSIRO MK3.6	Australia	monthly	0.8°x1.9°	
[3]GFDL CM3.0	USA	monthly	0.3-1.0°x1.0°	
^[4] HadGEM2ES	UK	monthly	0.3-1.0°x1.0°	

¹Watanabe et al. 2011; ²Rotstayn et al. 2012; ³Donner et al. 2011; ⁴Jones et al. 2011; ⁵van Vuuren et al. 2011

Data & Methods: Attributes of IPCC CMIP5 model scenarios

RCP 8.5: Rising emissions throughout the 21st century

RCP 6.0: Peak emissions around 2080, then decline

RCP 4.5: Peak emissions around 2040, then decline

Meinshausen et al. 2011

Knutti & Sedlacek 2013

Data & Methods: habitat model framework

Results & Discussion: Squid habitat in the late century (2100)

Results & Discussion: Latitudinal shift in potential habitat

Results & Discussion: Warming impact on spatial habitat pattern

Squid habitat changes were proportional to the degree of warming

Results & Discussion: Spatial distribution of favorable SST

Optimal SST showed highest areal reduction under the highest warming scenario

Summary & Conclusion

Thank you for your kind attention