Climate Predictions to Support Fisheries Management in a Changing Ocean

PICES ANNUAL MEETING, VLADIVOSTOK, RUSSIA, SEPTEMBER 27 2017

DESIREE TOMMASI, UNIVERSITY OF CALIFORNIA SANTA CRUZ AND NOAA SWFSC

Outline

- Climate effects on fisheries
- Environmental considerations in fisheries decisions
- Climate predictions at fishery relevant scales
- Successful application of seasonal forecasts for fisheries
- Challenges and future research needs

Impacts of climate variability on fisheries

Recruitment

Walleye pollock

Ianelli et al. 2011

Distribution

Nye et al. 2009

Fisheries decisions across time scales are impacted by climate effects

Aquaculture

- Extreme weather responses
- Stocking/harvest time

Fishing Industry

- Labor and gear needs
- Where/when/what to fish for

Coastal Management

• Beach closures (e.g. HAB's, jellies)

Fisheries Management

- Fisheries closures to reduce unwanted and incidental capture
- Provision of catch advice

But fisheries decisions rarely include climate or ecosystem effects

After a review of 1200 stocks worldwide, only 2% include environmental drivers in tactical management decisions

Management frameworks generally assume productivity and distribution will be stationary

- Static spatial and temporal closures
- Ineffective if fish phenology or distribution change with varying ocean dynamics

Population Data on catch, **Dynamics** abundance, Model biology **Stock Status Estimate** Management Stock Action **Assessment** Reference Model **Points**

Population Data on catch, **Dynamics** abundance, Model biology **Stock Status Estimate** Management Stock Action **Assessment** Reference Model **Points**

Challenges to integration of environmental effects into fisheries management

- No skillful forecasts of environmental conditions at the scale at which the fish operate and are managed
- Emergent effects of climate on marine ecosystems are complex
- Limited availability of time series for model development and validation

Challenges to integration of environmental effects into fisheries management

- No skillful forecasts of environmental conditions at the scale at which the fish operate and are managed
- Emergent effects of climate on marine ecosystems are complex
- Limited availability of time series for model development and validation

But things are changing...

Climate predictions differ from climate projections

- Prediction models are initialized with observations
- Initial value problem
- Predict statistics of climate over monthly to 30 year time scales (seasonal to decadal forecast)

or evolution of single weather feature at hourly to weekly timescales (weather forecast)

Skillful predictions at fishery relevant scales

Based on the Anomaly correlation coefficient (ACC) for SST anomalies from reforecasts during 1982- 2009

Anomaly correlation coefficients:

- above 0 at 5% level
- \triangle above persistence at 10% level with ACC > 0.5
- \checkmark above persistence at 10% level with ACC < 0.5.

Skillful predictions at fishery relevant scales

Forecast Accuracy = proportion correct of a yes/no forecast of an event

Longitude
Brier Score = estimate of the mean
square error of the probabilistic
forecast

8.0

0.4

Skillful predictions at multi-annual scales

Except for North Atlantic LMEs, skill was due to the predictable signature of radiative forcing changes over the 50 year time period rather than prediction of evolving modes of climate variability

Brier Skill Score = Negative scores indicate no additional skill as compared to an uninitialized forecast

Successful application of climate forecasts in fisheries management

Seasonal forecasts to reduce bycatch in the Australian east coast eastern tuna and billfish fishery

Seasonal forecasts to improve catch advice for California sardine

Biomass (1000mt) +/–95th to 5th percentiles

Forecast of the start of the lobster fishing season in the Gulf of Maine

Accuracy of probabilistic forecast for maximum air temperature, minimum air temperature, and rainfall in Queensland, Australia

Seasonal forecasts to improve prawn aquaculture farm management

 Reduction in climate model bias through improvements in model formulation and initialization

 Verify predictability of ecosystem relevant variables at decision relevant scales beyond SST

In hot water: Columbia's sockeye salmon face mass die-off

Warm water temperatures have made life 'grim' for sockeye salmon in the Pacific Northwest

Develop biogeochemical prediction capabilities

SEACHANGE Oyster dying as coast is hit hard

A Washington family opens a hatchery in Hawaii to escape lethal waters.

Develop biogeochemical prediction capabilities

OPEN

epted: 10 May 2016 Published: 07 June 2016

 Unresolved local processes can limit predictability of ecosystem relevant variables

1/10° ocean

Improve climate
 predictability at LMR-relevant
 regional scales through higher
 resolution global prediction
 systems or the development
 of downscaling frameworks

1/10° ocean

- Emergent effects of climate on marine ecosystems are complex
- Limited availability of time series for model development and validation

Changing Nature of Ecosystem

West coast fisheries hit hard by poor ocean conditions

Oregon Public Broadcasting News, October 2016

Recent Methodological Advances in Fisheries Models

- Spatial distribution models for dynamic ocean management (Hazen, W3)
- Salmon freshwater mortality forecast for in season catch advice (DFO, WG-40)
- Spatio-temporal fisheries models (Thorson, S1, S3)
- Ecological threshold indicators to inform fisheries management (Samhouri et al. 2017, Hunsicker S3)
- Climate enhanced stock assessment models (Holsman et al. 2016, Hollowed S6)

Thank you!

noaaresea

desiree.tommasi@noaa.gov

