

PICES-2017 Annual Meeting:

Environmental Changes in the North Pacific and Impacts on Biological Resources and Ecosystem Services Sep 22 – Oct 1,2017 Vladivostok, Russia S11: FIS/POC Topic Session

Environmental variability in Arctic and Subarctic ecosystems and impacts on fishery management strategies

Assessing biodiversity patterns of fish resources in the Eastern Bering Sea

Irene D. Alabia, Jorge Garcia Molinos, Sei-Ichi <u>Saitoh</u>, Takafumi Hirata, Toru Hirawake and Franz J. Mueter

28 September 2017

Introduction

Present-day (2006) β-diversity

Future (2100) β -diversity

- Climate changes significantly impact biodiversity, through changes in species richness & community composition^{1,2}
- Highest projected β-diversity changes at the equatorial, subarctic and Arctic Oceans¹

Introduction

Beta diversity (β-diversity)³

"extent of change in community composition, in relation to a complex gradients of environment"

It is further partitioned into two components that account for dissimilarity patterns in community composition⁴

Turnover		Nestedness	Turnover & nestedness	
Site A1 1 2 3 4 Site A2 1 2 5 6 Site A3 1 2 7 8	Spatial turnover	Site B1 1 2 3 4 5 6 7 8 Site B2 1 2 3 4 5 6 7 8 Site B3 1 6 6 7 8 8 9 <td>Site C1 1 2 3 4 5 6 Site C2 1 2 3 7 8 Site C3 1 7 8 7 8</td>	Site C1 1 2 3 4 5 6 Site C2 1 2 3 7 8 Site C3 1 7 8 7 8	

replacement of some species by others

nested loss of species from the richest to the poorest locality combination of both replacement & species loss

Introduction: *Why examine regional* β *-diversity?*

Unlike α -diversity, β -diversity is less well-studied⁵

Global patterns in beta diversity along large-scale gradients are less consistent; vary among ecosystems and assemblages of organisms^{6,7}

Studies of beta diversity can inform management

- Heterogeneity in communities tends to reflect heterogeneity in habitat³
- It can also indicate important spatial or temporal biogeographic transitions⁸

General research questions

- How are the regional patterns of species richness and βdiversity distributed in space and across climate transitions?
- How are the components of total β-biodiversity (i.e. spatial turnover and nestedness) vary across transitions?

Data & methods: *Study area & 24-year* sampling grids*

Data & methods

Transition 1 (Transition 2 (Transition 2 (Warm-Cold)		Transition 3 (Cold-Warm)		
1993-2000	2001-2005		2006-2013		2014-2016	
Period 1	Period 2		Period 3		Period 4	

*Sorensen index of Dissimilarity – betapart package (Baselga & Orme 2012)

Results & Discussion: Spatio-temporal patterns of richness*

Spatio-temporal distribution of species richness showed clear regional patterns

- High species richness were
 located in Southern Bering Sea
 (SBS; 52-60N)
- Warm years showed higher
 richness in SBS than cold and
 mixed periods (moderately high
 in NBS; 60-70N)

Results & Discussion: Spatio-temporal patterns of β -diversity

 β -diversity and its components showed contrasting patterns relative to species richness

- High β-diversity were located in Northern Bering Sea (60-70N)
- Nestedness component dominates β-diversity patterns across all transition
- Emerging pattern of homogenization in species assemblages under warm climatic stanzas^{1,9}

¹Garcia Molinos et al. 2016; ⁹Magurran et al. 2015

Results & Discussion: Extent of winter seaice concentration: potential driver of β -diversity patterns

Spatial extent of winter seaice showed retreat and advance during distinct climatic stanzas

Determines the latitudinal extent of cold pool in summer¹¹ ~ more extensive seaice extent, more southerly protrusion of cold pool and vice versa ~ preclude the meridional expansion of marine species in the EBS

Summary

- Strong yet contrasting latitudinal gradients in both species richness & beta-diversity^{9,10}
- Beta-diversity patterns across the 3 transitions were dominated by nestedness over turnover
 - Changes in spatial extent of oceanographic barrier (i.e. cold pool) to species poleward movement¹¹
 - Intensification of warming signals during the last decades, modifying productivity conditions in the basin^{11,12}
 - Warm climatic stanzas resulted to homogenization of species assemblages in the EBS

Thank you for your attention