# Microfiber source characterization in the Northeastern Pacific Ocean



Katerina Vassilenko, Mathew Watkins, Esther Gies, Anahita Etemadifar, Marie Noel, **Peter S. Ross** 

Ocean Pollution Research Program, Vancouver Aquarium, Vancouver, BC, Canada. E-mail: Peter.Ross@vanaqua.org



## Who we are











# Ocean Pollution Research Program (OPRP)



#### Our priorities:

- ☐ Microplastics in the ocean
- □ Pollution Tracker, a new coast-wide monitoring initiative
- Marine mammals as sentinels of ocean pollution
- ☐ Clean seafood for coastal aboriginal communities
- ☐ Oil spill science



# Plastics as an emerging threat to ocean life



- More then 25,000 formulations;
- Sometimes possesses endocrine-disrupting properties;
- Can cause acute or chronic toxicity;
- Fitness and reproduction effect;
- Documented in hundreds of species of invertebrates, fish, seabirds and marine mammals around the world;
- □ Is a pollutant class like no other...





## Plastics in numbers





# Protocol development



#### Microplastic characterization in environmental samples

- 1. Sampling (< 5 mm)
- 2. Extraction & cleanup
  - a. Seawater
  - b. Sediments
  - c. Biota (zoop, mussels, fish & birds)
- 3. Quantification
- Polymeric characterization using FTIR (µ-ATR–FTIR)







# Protocol development: oil extraction



A novel, density-independent and FTIR-compatible approach for the rapid extraction of microplastics from aquatic sediments.

Ellika M. Crichton, Marie No"el, Esther A. Gies and Peter S. Ross Anal. Methods, 2017, 1–10

| Particles recovery | Oil (%)    | Nal (%)        | CaCl2 (%)      |
|--------------------|------------|----------------|----------------|
| Mean ± SD          | 96.2 ± 2.2 | $83.3 \pm 5.8$ | $69.0 \pm 3.6$ |



Crichton et al., 2017

## Research focus



- MP pathways in the environment
- Source identification

- Water
  - □ Arctic
  - □NE Pacific and British Columbia
- Sediments
  - □Coastal British Columbia
- Biota analysis
  - □Zooplankton
  - ■Mussels
  - □ Fish

## Microplastics in seawater and zooplankton



NE Pacific, Line P and the La Perouse Monitoring Programs cruises (2012)

- Sub-surface <u>seawater</u> in the NE Pacific from seawater intake
- Zooplankton samples collected from vertical tows







Canadian Coast Guard Ship (CCGS) John P. Tully

## Seawater



#### Up to 9,200 particles (fibres and fragments) per cubic meter in the NE Pacific Ocean





- (a) Total microplastic concentrations (particles/m \_, detected particles >62 lm)
- (b) Map of microplastic composition, defined here as a percentage fibre of the total plastics detected.



## Zooplankton



- Zooplankton are mistaking microplastics for food
- ☐ Highest levels of MP near the coast

Neocalanus cristata



Euphausia pacifica







# Estimated trophic transfer of microplastics



Salmon and whale predation on zooplankton in the Strait of Georgia

|                 | Number of particles per day      |  |
|-----------------|----------------------------------|--|
| Juvenile salmon | 2-7                              |  |
| Adult salmon    | 39 – 91                          |  |
| Humpback whale  | >300,000 (only from zooplankton) |  |

# Microplastics in zooplankton 2017



Collabortaion of Ocean Wise and Fisheries and Ocean Canada

Exposure, ingestion, and heath effects in zooplankton









## Research focus-2



- MP pathways in the environment
- Source identification

Collaboration with Metro Vancouver: microplastics in wastewater treatment facilities

Wastewater is a major source of microplastic fibres in the marine environment



■ Microfibres: up to 75% of microplastics found in the Strait of Georgia

## Microplastics in wastewater (pilot study)



Used sieve 63 µm Mass balance:



Primary sludge:
fibers removal
89-97%
particles removal
72% -97% of

Secondary sludge:
fibers removal
3-11%
particles removal
4-27% of

0.04-0.10 trillion microplastic fibers enters the ocean annually



## Research focus-2



- MP pathways in the environment
- Source identification

What are the main components of microplastics?

- ☐ FT-IR signature library
  - □Parental materials (as made)
  - ■Weathering modifications (UV, O2, temperature, biofouling)
  - □FT-IR signature from textile to microplastic contaminant

Collaboration with the three major outdoor apparel retailers:













## Microplastic fibres from textiles



☐ One fleece jacket can release up to 600 000 fibres or 0.3 g per wash

#### Project goal:

Fiber design changes to reduce textile fibre shedding:

- ☐ Yarn type
- Mechanical finishing
- □ Composite
- Weathering effect





## What is next?



- ☐ Urgent call to reduce the input of the synthetic fibres into the ocean
- Ensure standardisation and congruence of terminology, methodology and findings
- Bring together environmental and textile sciences
- Only multiple perspective approach will be able to develop sensible mitigation measures and management options.

# Thank you

Staff: Marie Noel, Anahita Etmadifar, Kelsey Delisle, Esther Gies, Jessica LeNoble; Stephen Chastain, Megane Neauport

Graduate students: Ellika Crichton, Lauren Howell, Julie Dimitrijevic;

Partners: Moira Galbraith, Jean-Pierre Desforges, Neil Dangerfield, Sarah Zimmerman, Sarah-Anne Quesnel, Bill Williams, Jane Eert, Sophie Johannessen, Svein Vagle, John Nelson, Leah Bendell, Sarah Dudas, Doug Bertram, Jenn Provencher, Mark Mallory; Lisa Loseto; Tuktoyaktuk HTC;

Funders: MetroVancouver, Fisheries and Ocean Canada, Northern Contaminants Program (AANDC), One Ocean Expeditions, MEC, Patagonia, REI, Arcteryx

