

Towards Common Ecosystem Reference Points for North Pacific Ecosystems

26 September 2017

Robert Blasiak

Research Fellow (Stockholm Resilience Centre), Visiting Researcher (University of Tokyo) Senior Research Fellow (NEREUS Program)

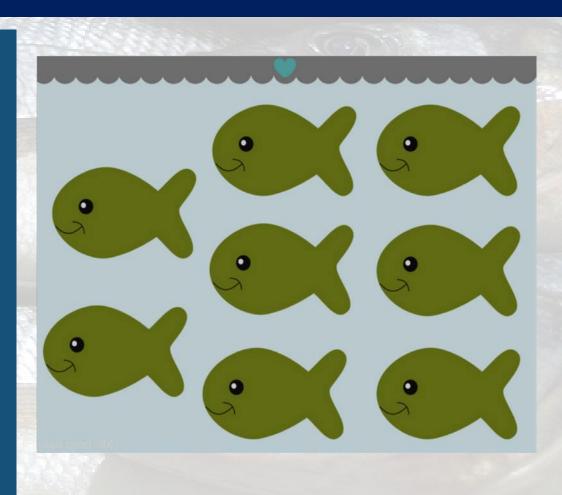
Presentation Structure

1) Some terminology

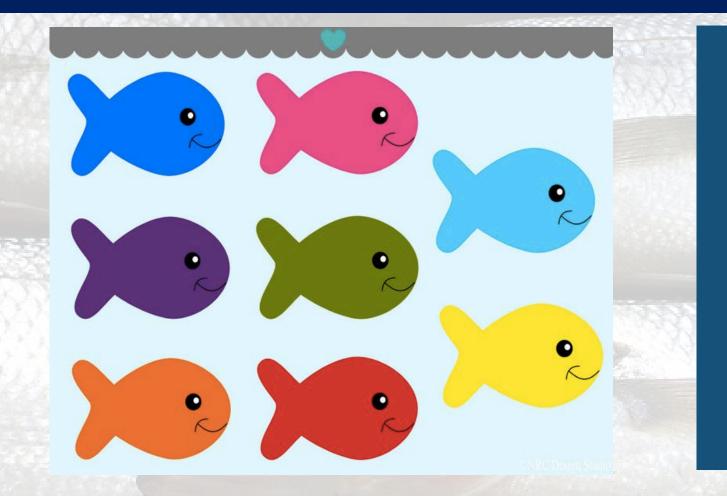
2) Matching reference points to policy commitments

3) Recent work on ecosystem reference points

4) Incorporating human dimensions

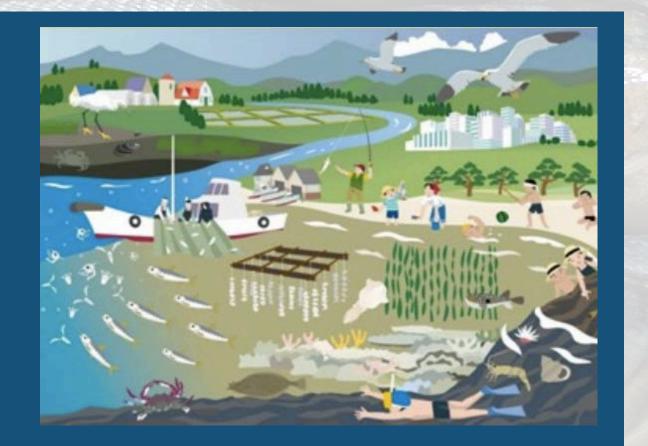

Presentation Structure

1) Some terminology


Scope of management

Single-species management (focused in particular on stock size and reproductive potential)

To a large degree, singlespecies assessments are still the basis for much advice on fish stock management


Scope of management

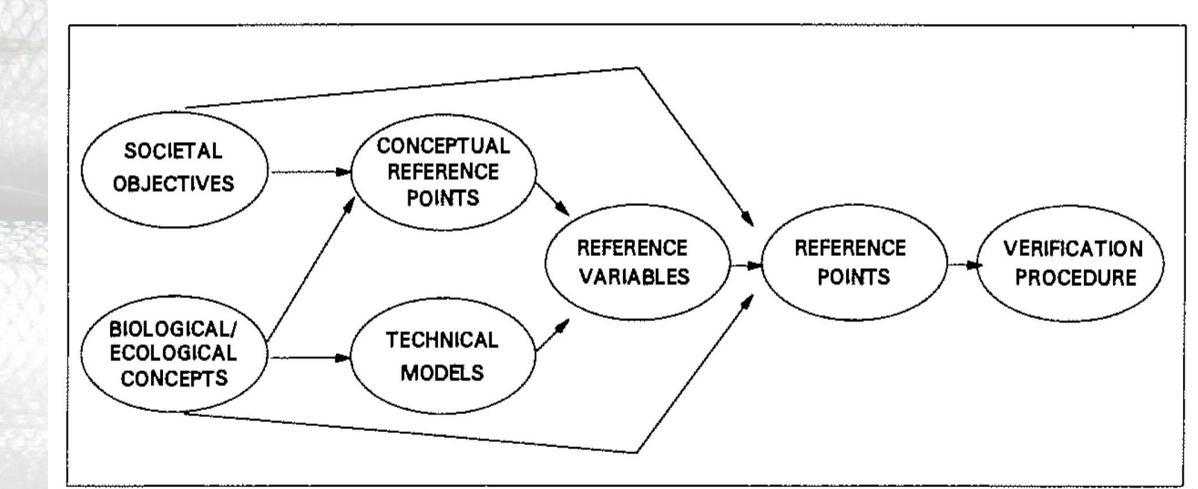
Multi-species management (also considers predator/prey relationships and environmental conditions)

Scope of management

Ecosystem-based management (more holistic approach aimed at maintaining integrity of ecosystems as much as possible, while supporting sustainable levels of human use)

Goals and objectives

Regardless of scope, management should be guided by clearly stated goals and objectives


• Can be biological, ecological, economic, social

 Not always an obvious decision, as common goals are likely to be mutually exclusive to some degree

Goals and objectives (examples)

	Goals	Operational objectives
Biological	To maintain the target species at or above the levels necessary to ensure their continued productivity	To maintain the stock at all times above 50% of its mean unexploited level
Ecological	To minimize the impacts of fishing on the physical environment and on non-target (bycatch), associated and dependent species	To maintain all non-target, associated and dependent species above 50% of their mean biomass levels in the absence of fishing activities
Economic	To maximize the net incomes of the participating fishers	To stabilize net income per fisher at a level above the national minimum desired income
Social	To maximize employment opportunities for those dependent on the fishery for their livelihoods	To include as many of the existing participants in the fishery as is possible given the biological, ecological and economic objectives listed above

From objectives to reference points

(Caddy and Mahon 1995: 3)

Conceptual Reference Points

Target reference points (TRPs) \rightarrow correspond to desirable conditions

Limit reference points (LRPs) \rightarrow correspond to undesirable conditions to be avoided (thresholds)

Conceptual Reference Points

Reference points provide signposts for the manager: "here you are doing well" (target) and "if you go any further down this road, we are in trouble" (limit)

Technical Reference Points

Conceptual reference points can subsequently be defined as specific "technical reference points"

(e.g. fishing mortality giving maximum total yield in a production model $\rightarrow F_{MSY}$)

Ecosystem Reference Points

More challenging in many ways, for example:

- Management objectives for ecosystems are not always well-defined (e.g. in comparison with management objectives for single stocks)
- 2) More (diverse) stakeholders likely involved
- 3) Can encompass flora, fauna and abiotic conditions (and target/non-target species)

Ecosystem Reference Points

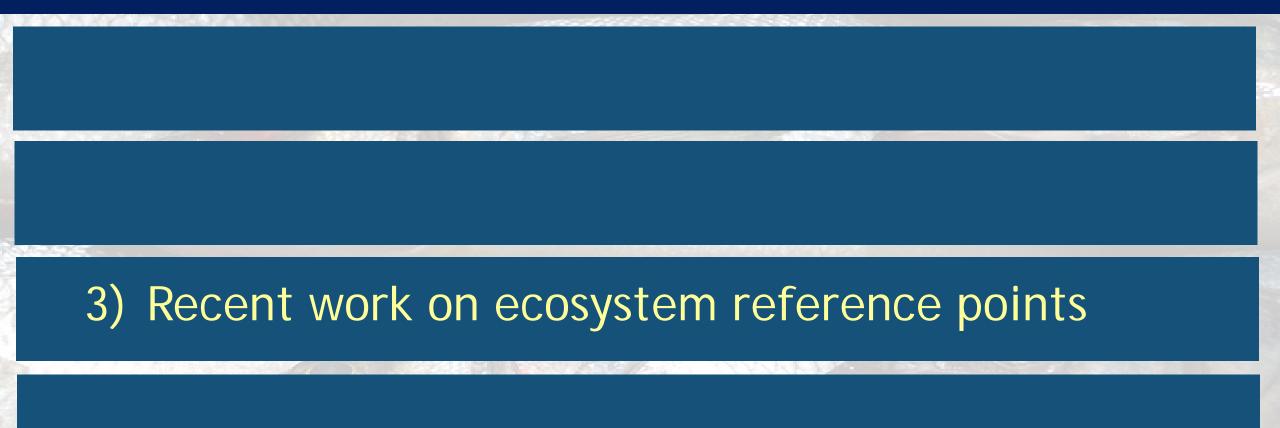
BUT... ecosystem-based regimes are diverse! Can cover everything from a collection of singlespecies reference points (e.g. setting aside some percentage of forage fish as prey for target species or protected species (e.g. marine mammals)) to reference points that measure some level of ecosystem function (e.g. measures of biodiversity)

Presentation Structure

2) Matching reference points to policy commitments

				A CONTRACTOR OF	
1223 S.		Contraction and Contract	WAY TO BE		

2020 is coming soon...


Strategic Plan on Biodiversity 2011-2020 and Aichi Targets (#6)

Convention on

Biological Diversity

"By 2020 all fish and invertebrate stocks and aquatic plants are managed and harvested sustainably, legally and applying ecosystem based approaches, so that overfishing is avoided, recovery plans and measures are in place for all depleted species, fisheries have no significant adverse impacts on threatened species and vulnerable ecosystems and the impacts of fisheries on stocks, species and ecosystems are within safe ecological limits."

Presentation Structure

PICES Work (completed)

2003 SG-EBM Ecosystem-based management science and its application to the North Pacific

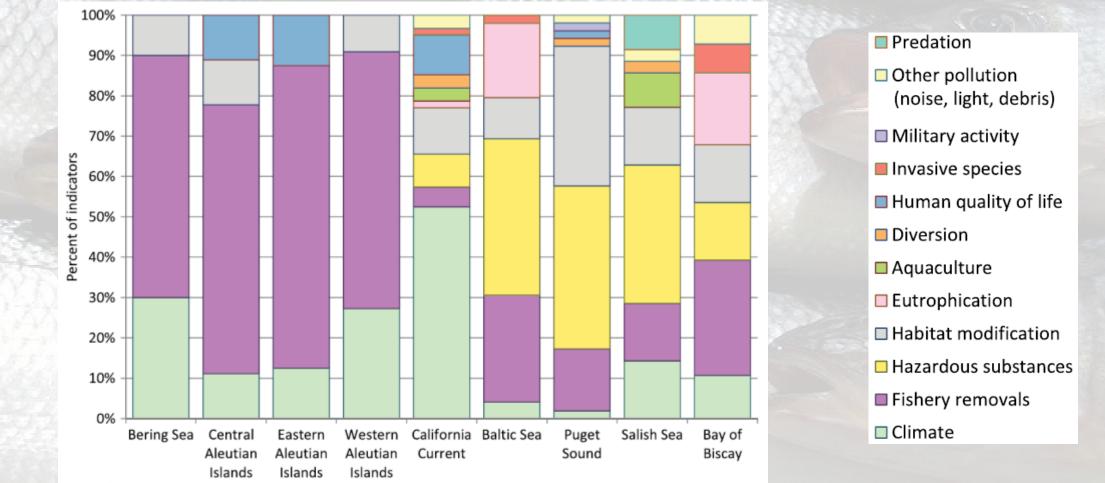
2004-2009 WG19 Ecosystem-based management science and its application to the North Pacific

2011-2015 WG 28 Development of Ecosystem Indicators to Characterize Ecosystem Responses to Multiple Stressors

2015-2016 SG CERP Common Ecosystem Reference Points across PICES Countries

PICES Work (ongoing!)

2016- WG 36 Common Ecosystem Reference Points across PICES Countries

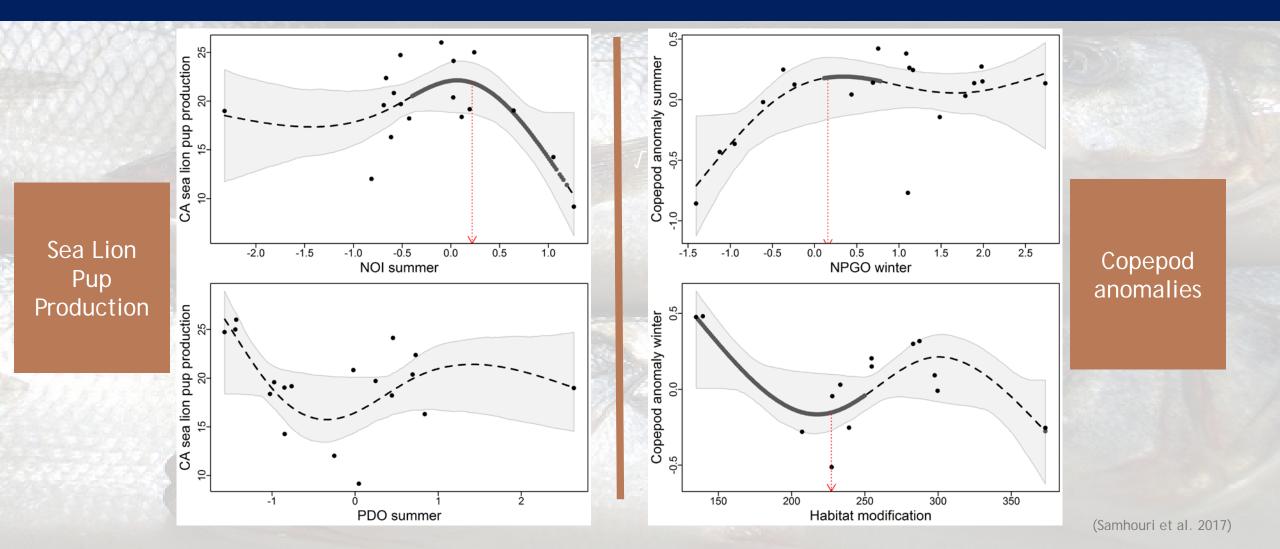

Co-chairs: Xiujuan Shan (China) Mary Hunsicker (USA)

Join our session today! S3 - Room D-504 (10:50 AM)

WG 28 - Identifying availability of biological indicators

		Canada	China	Japan	Korea	Russia	U.S.
Relative biomass							
	gelatinous zooplankton	N,N	Y,N	N,N	Y,Y	Y,Y	Y,Y
	cephalopods	N, N	Y,N	Y,Y	Y,Y	Y,Y	N,N
	small pelagic fishes	Y,Y	Y,Y	Y,Y	Y,Y	Y,Y	Y,Y
	scavengers	N,S	N,N	N,N	S,S	Y,Y	N,Y
	demersals	Y,Y	Y,Y	Y,Y	Y,Y	Y,Y	N,Y
	piscivores	Y,Y	Y,Y	Y,Y	Y,Y	Y,Y	N,Y
	top predators	Y,Y	Y,Y	Y,Y	S,S	Y,Y	Y,Y
Biomass ratios	piscivore:planktivore	N,Y	Y,Y	Y,Y	Y,Y	S,Y	N,Y
	pelagic:demersal	N,Y	Y,Y	Y,Y	Y,Y	N,Y	N,Y
	infauna:epifauna	N, N	N,N	N,N	N,S	N,Y	N,N
Habitat-forming taxa	nearshore	Y,Y	S,N	S,S	S,S	Y,Y	N,N
	offshore	N,N	S, N	N, N	S,S	Y,Y	Y,Y
Size spectra		N,N	Y,Y	N,N	Y,Y	Y,Y	Y,Y
Taxonomic diversity		S,S	Y,Y	S,S	Y,Y	S,S	N,Y
Total fishery removals		Y,Y	S,Y	Y,Y	S,S	Y,Y	Y,Y
Max. (or mean) length		N,Y	Y,N	Y,Y	Y,Y	Y,Y	N,Y
Size-at-maturity	target species	Y,Y	Y,Y	Y,Y	Y,Y	Y,Y	Y,S
	bycatch	N, N	N,N	N,N	Y,Y	Y,Y	N,S
a second seco	top predators	Y,Y	Y,Y	Y,Y	Y,Y	Y,Y	Y,Y
Trophic level or trophic spectrum of the							
catch		Y,Y	Y,Y	Y,Y	Y,Y	S,Y	Y,Y
Biophysical characteristics							
		S,S	Y,Y	Y,Y	Y,Y	S,S	S,S

WG 28 - Identifying variance in types of indicators being used in different ecosystems

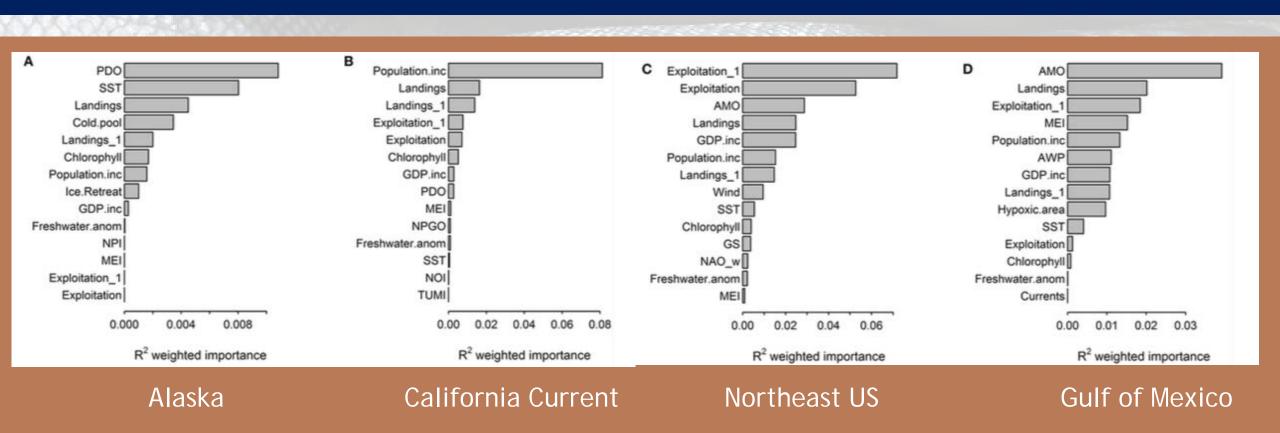

(Boldt et al. 2014)

Samhouri et al. (2017)

Presents quantitative framework based on multimodel inference (MMI) that allows for precautionary screening of threshold relationships between ecosystem states and environmental or human pressures.

Methods: gradient forest and generalized additive model (GAM) analyses to look for nonlinearities and to identify potential ecosystem state thresholds

Samhouri et al. (2017)

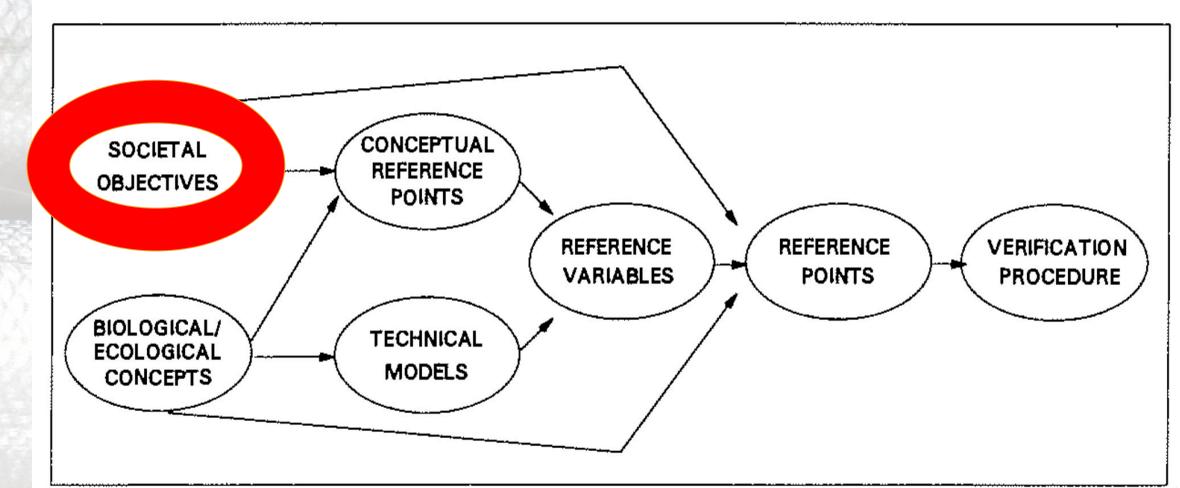


Tam et al. (2017)

Thresholds of ecological indicators represent points at which a small increase in one or many pressure variables results in an abrupt change of ecosystem responses.

Tam et al. (2017) develop thresholds using gradient forests for a suite of ecological indicators in response to multiple pressures that convey ecosystem status for large marine ecosystems from the US Pacific, Atlantic, sub-Arctic, and Gulf of Mexico.

Tam et al. (2017)


Importance of human and environmental pressure variables across ecological indicator outputs (gradient forest analyses)

(Tam et al. 2017)

Presentation Structure

This slide again

(Caddy and Mahon 1995: 3)

Dealing with shifts in societal objectives

Interviews with fishers and fishery managers in Matsushima Bay (Japan) and Salish Sea (Canada / USA) about changes in livelihoods and management objectives "Our social systems are in as much change - if not more - as our ecological systems. [...] Our knowledge and data on both are changing. We have much more data now on our ecosystems than we had 10 years ago"

" the ecosystem needs to be in balance [..] our ocean health has got to be our number one priority, it isn't an ocean we have total control over."

"There must be something which keeps you there, giving you a sense of satisfaction, while at the same time, it must also give you enough to support yourself".

Dealing with shifts in societal objectives

Traditionally, seaweed farming in Matsushima Bay was operated in family units. Husband-and-wife teams frequently worked in tandem on a boat ("meoto-bune"), and received support from their children when they landed.

However, the seaweed farming and production facilities were washed away by the tsunami in 2011, and the only way to receive government support to rebuild the industry was to form a group and work collaboratively.

They decided to establish a company and restart their operations, but some struggled to change their traditional way of doing things, feeling uncomfortable with a situation that was "like having a lot of CEOs in one company". Another respondent explained that working individually was much harder, and he used to "wear out [his] body", while working in a group is "wearing out [his] mind".

Bringing together human dimensions and biological / ecological indicators

• Update of Allison et al. 2009 Projected sea surface temperature • Constructed vulnerability increase index for 147 coastal Proportion of industrial to countries small-scale **Adaptive Capacity** Exposure Sensitivity fishing Total subsidies to Mean Mean fisheries sector per • Methodology: Exposure + Proportion of landed monetary Mean Sensitivity - Adaptive economically active value population in fishery Number of fishers sector Capacity = Vulnerability Literacy rate Healthy life expectancy **Total fisheries landings Fisheries export** value as Based on a set of 12 primary GDP per capita proportion of total Fish protein as proportion Governance level

of all animal protein

export value

variables

So how did the updated vulnerability index look?

Allisc	on et al. 2009	
1	Angola	
2	DR Congo	
3	Russian Federation	
4	Mauritania	
5	Senegal	
6	Mali	(<u>)</u> , <u>)</u> , (), (), (), (), (), (), (), (), (), ()
7	Sierra Leone	
8	Mozambique	
9	Niger	
10	Peru	
11	Morocco	12.20
12	Bangladesh	
13	Zambia	
14	Ukraine	
15	Malawi	

		Start 2 starts
	Upda	ted/revised index
1	1	Kiribati
	2	Micronesia
	3	Solomon Islands
ŝ	4	Maldives
	5	Tuvalu
	6	Haiti
	7	Sierra Leone
	8	China
	9	Seychelles
	10	Indonesia
	11	Guinea-Bissau
	12	Cote d'Ivoire
	13	Sao Tome e Principe
	14	Senegal
	15	Ghana

List of most to least vulnerable countries

Near-fut	ure scenario (20)	16-2050)	
RCP 2.6	RCP 4.5	RCP 8.5	(Rank)
KIRIBATI*	KIRIBATI*	KIRIBATI*	1
MALDIVES*	MALDIVES*	MICRONESIA,	- 2
MALDIVES*	MALDIVES*	FED. STATES*	2
SOLOMON	SOLOMON ISLANDS*	SOLOMON	- 3
ISLANDS*	SOLOWON ISLANDS	ISLANDS*	5
MICRONESIA,	SIERRA LEONE	MALDIVES*	- 4
FED. STATES*	SIERRA LEUNE	WALDIVES*	4
MOZAMBIQUE	MICRONESIA, FED.	VANUATU*	- 5
NUCLAIVIDIQUE	STATES*	VANUATU	5

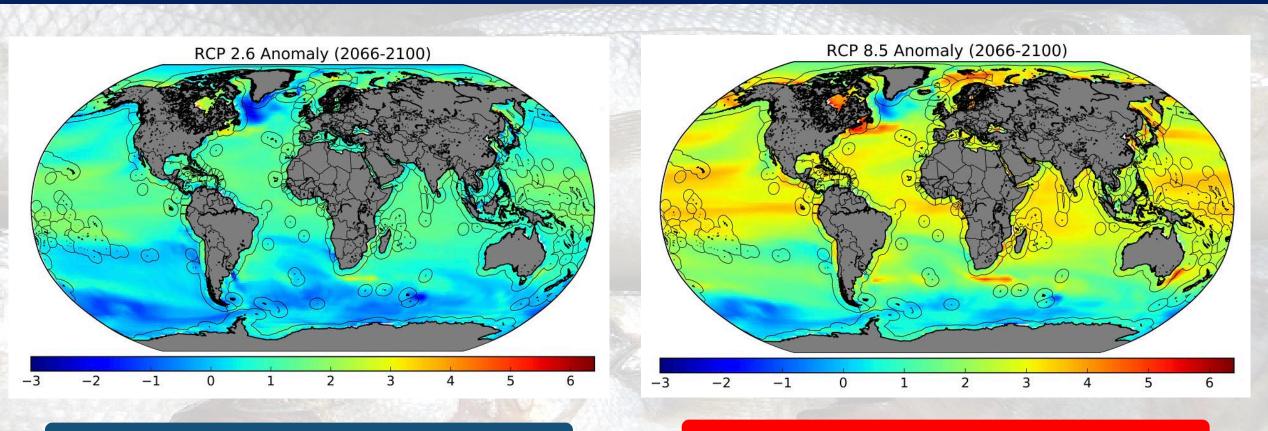
(Blasiak et al. 2017)

List of most to least vulnerable countries

Near-fut	ure scenario (201	16-2050)		Distant-future scenario (2066-2100)					
RCP 2.6	RCP 4.5	RCP 8.5	(Rank)	RCP 2.6	RCP 4.5	RCP 8.5			
KIRIBATI*	KIRIBATI*	KIRIBATI*	1	KIRIBATI*	KIRIBATI*	KIRIBATI*			
		MICRONESIA,	-			SOLOMON			
MALDIVES*	MALDIVES*	FED. STATES*	2	MALDIVES*	MOZAMBIQUE	ISLANDS*			
SOLOMON		SOLOMON	- 3			7111/4111#			
ISLANDS*	SOLOMON ISLANDS*	ISLANDS*	3	SOLOMON ISLANDS*	SIERRA LEONE	TUVALU*			
MICRONESIA,	SIERRA LEONE	MALDIVES*	- 4	MICRONESIA, FED.	SAMOA*	VANUATU*			
FED. STATES*			4	STATES*	JANICA				
MOZAMBIQUE	MICRONESIA, FED.	VANUATU*	- 5	SIERRA LEONE	COMOROS*	MALDIVES*			
	STATES*		5		COMOROS	WALDIVES			

(Blasiak et al. 2017)

Data quality concerns Ecological indicators (example)


Allison et al - exposure calculated from land surface temperature anomalies

But now, much more ecological model output data available

Calculated multi-model ensemble means using CMIP5 output data from 14 models (historical and near-future (2016-2050) and distant-future (2066-2100); averaged across exclusive economic zones (EEZs) of different countries

CMIP5 models used: CanESM2, CNRM-CM5, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, GISS-E2-H, GISS-E2-R, HadGEM2-AO, MIROC-ESM-CHEM, MIROC5, MPI-ESM-LR, MPI-ESM-MR, NorESM1-M, NorESM1-ME

Sea Surface Temperature Anomalies

Optimistic (CO2 reductions, mitigation, etc.)

Pessimistic (Business-as-usual)

Data quality concerns Socio-economic indicators (example)

For number of fishers

FAO is only source of comparable country data, but large gaps exist:

-- data for many countries over 20 years old
-- some countries disaggregate inland / marine fisheries
-- some disaggregate aquaculture from capture fisheries
-- some disaggregate part-time and full-time fishers

Country or area Pays ou zone Pais o área		1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996
Côte divoire														
Full time Total	M							3 000f 3 000f						3 805 3 805
Marine, nei Full time Part time	M							11 000/						15 902
Occasional Total	M							11 0001						15 902
Totel Full time	M							14 0001						19 707
Part time Occasional Total	M							14 0001						19 707
Croatia ²¹								14 000						12101
Full time Occasional	M								606 44 297	633 31 482	1 127 33 293	538 34 905	446 37 789	366 38 684
Total Marine Coastal	M								44 903	32 115	34 420	35 441	38 235	39 060
Full time Occasional Total	M								2 122 9 001 11 123	2 279 10 181 12 460	2 547 9 753 12 300	2 184 9 772 11 958	2 511 9 245 11 756	2 452 8 725 11 177
Total Full time	M								2 728	2 912	3 674	2 720	2 957	2818
Occasional Total	M								53 298 56 026	41 663 44 575	43 046 46 720	44 677 47 397	47 034 49 991	47 409 50 227
Cuba														
Total Marine, nei	м													
Full time Part time Total	M	13 747	13 554 13 554	13 154	13 549 13 549	12 659	12 202	12 130	11 865					
Total Full time	M	13 747	13 554	13 154	13 549	12 659	12 202	12 130	11 865					
Part time Total	M	13 747	13 554	13 154	13 549	12 659	12 202	12 130	11 865					
Cyprus Aquatic-life cultiva	fon													
Full time	F									10 56	10	16 85	14	16 104
Part time	F.									05	8	3	11	18
Total	M									10 61	18 80	19 93	25 110	18 122
Full time	F									12	16	19	3 16	4 18
Part time	F									36 39	30 27	23 27	18 10	20 12
Total Marine, nei	F M									38 51	35 43	27 46	21 26	24 30
Full time Part time	M	210 115	530 229	503 264	469 317	477 306	444 314	230 171	565 370	1 019	1 035	974	1 097	1 182
Occasional Total Total	м	223 548	475 1 234	518 1 285	577 1 363	559 1 342	548 1 306	360 761	757	1 019	1 035	974	1 097	1 182
Full time	F M	210	530	503	469	477	444	230	565	12 1 087	15 1 121	20 1 078	17 1 204	20 1 304
Part time Occasional	M	115 223	229 475	264 518	317 577	308 559	314 548	171 360	370 757	36 44 48	38 37 53	26 35 46	20 20 46	22 30 42

Dealing with data issues

 Monnereau et al. (2017) → Looks at the methodological decisions behind vulnerability work (e.g. redundancy of variables, scaling of socio-economic variables to population size)

 Cheung et al. (2005) and Cheung and Jones (*in press*) – using fuzzy logic to deal with data gaps and differences in data quality

Identifying Common Ecosystem Reference Points

- Lots of exciting work going on, and lots of progress has been made with determining data availability across member countries
- Methodological toolkit rapidly evolving

 Societal objectives (and human dimensions!) are a key element towards setting goals/objectives and identifying appropriate ecosystem reference points (ecosystems AND social systems will remain dynamic and variable across PICES member states!)

References

Babcock, E.A. and Pikitch, E.K. (2004) Can we reach agreement on a standardized approach to ecosystem-based fishery management? Bulletin of Marine Science 74(3): 685-692.

Blasiak, R., Spijkers, J., Tokunaga, K. et al. (2017) Climate change and marine fisheries: Least developed countries top global index of vulnerability. PLOS One. doi.org/10.1371/journal.pone.0179632

Boldt, J.L., Martone, R., Samhouri, J. et al. (2014) Developing ecosystem indicators for responses to multiple stressors. Oceanography 27(4):116-133.

Caddy, J. and Mahon, R. (1995) Reference points for fisheries management. FAO, Rome. 83 pp.

Cheung, W.W.L., Pitcher, T.J. and Pauly, D. (2004) A fuzzy logic expert system to estimate intrinsic extinction vulnerabilities of marine fishes to fishing. Biological Conservation 124: 97-111.

Hoggarth, D.D., Abeyasekera, S., Arthur, R.I. et al. (2006) Stock assessment for fishery management: A framework guide to the stock assessment tools of the Fisheries Management Science Programme. FAO, Rome. 282 pp.

Minohara, A., Cooling, C. and Blasiak, R. (*in press*) Livelihoods and social systems in a changing world: A comparison of the fisheries and aquaculture sector in Matsushima Bay and the Salish Sea. United Nations University Press.

Monnereau, I. Mahon, R., McConney, P. et al. (2017) The impact of methodological choices on the outcome of national-level climate change vulnerability assessments: An example from the global fisheries sector. Fish and Fisheries 18(4): 717-731.

Mollmann, C., Lindegren, M., Blenckner, T. et al. (2014) Implementing ecosystem-based fisheries management: from single-species to integrated ecosystem assessment and advice for Baltic Sea fish stocks. ICES Journal of Marine Science 71(5): 1187-1197.

Samhouri, J.F., Andrews, K.S., Fay, G. et al. (2017) Defining ecosystem thresholds for human activities and environmental pressures in the California Current. Ecosphere 8(6): e01860

Tam, J.C., Link, J.S., Large, S.I. et al. (2017) Comparing apples to oranges: Commons trends and thresholds in anthropogenic and environmental pressures across multiple marine ecosystems. Frontiers in Marine Science doi: 10.3389/fmars.2017.00282

Thank you!

Stockholm Resilience Centre Sustainability Science for Biosphere Stewardship

