The impacts of climate variability on local ecosystems of the Salish Sea

Julie <u>Keister</u>¹, Amanda Winans¹, Bethellee Herrmann¹, Kimberly Stark², Julia Bos³, Todd Sandell⁴

¹University of Washington ²King County Marine Monitoring Group ³Washington Department of Ecology ⁴Washington Department of Fish and Wildlife

Record high temperatures occurred during the Pacific Warm Anomalies, a.k.a. "The Blob"

January 2014

Develop during winter 2013-14

Autumn 2014 – Warm anomalies affect the coast

October 2014

Moved onshore in fall 2014

What effects were seen in local waters?

Temperature Chlorophyll Zooplankton Salmon and forage fish

Time Series Data:

Hydrography and chlorophyll biomass:

1997-present, monthly throughout Puget Sound (WA Dept. of Ecology)

Zooplankton:

2014-present, bi-weekly throughout Puget Sound (SSMSP, J. Keister)

Salmon growth and survival:

multiple datasets, some since 1999 (Canada DFO, NOAA)

Herring spawning stock biomass 1990-present, weekly (WDFW)

Salish Sea bathymetry

Series of shallow sills restrict water flow from the ocean.

Diverse, oceanic species assemblage

Copepods (>30 spp.):

Euphausiids: 4 species

Amphipods: 4+ species

Decapods: 10+ species

Other species:

Chaetognath, 2 Larvaceans,
Cladocerans, numerous
Bivalves, Gastropods,
Echinoderms, Polychaetes,
Barnacles ...

Pteropods: 3 species

Jellyfish: 12+ species

Temperatures from monthly CTD casts: 2014-2017

Chlorophyll biomass from monthly CTD casts

Total zooplankton biomass (vertical net tows): Differences among regions and years

Total zooplankton biomass (vertical net tows): Differences among regions and years

Changes in predation?

Some species showed huge phenology shifts during warm years:

Some did not:

Juvenile salmon growth (hatchery Chinook)

Average weight gain per day from release to recapture

Hatchery region North Central South

http://www.fpc.org

Not the same for juvenile coho salmon growth

Coho salmon smolt-to-adult survival rate was higher for 2015 than 2014 out-migrants for many populations:

(No data yet for 2016 or 2017)

Herring spawning stock biomass (age 2+ years)

Next steps

Model bioenergetic differences among years

Trudel et al. (2002) - Changes in growth driven more by prey composition and quality than SST-driven changes in salmon feeding and metabolic rates.

Next steps

Model bioenergetic differences among years

 Quantify relationships among "bottom-up" physical and biological variables

Continue diagnosing mechanisms of climate impacts on local ecosystem

In Puget Sound...

Changes in zooplankton biomass, phenology, composition

Possible changes in predation

→ Higher metabolism and growth across multiple trophic levels, supported by sufficient production.

