Linking global to regional ocean forecsts: a hybrid dynamical-statistical approach

Albert J. <u>Hermann¹</u>

Wei Cheng¹, Georgina A. Gibson², Ivonne Ortiz¹, Kerim Aydin³, Samantha Siedlecki⁴

¹Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, WA, USA. E-mail: albert.j.hermann@noaa.gov
²International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK, USA.
³NOAA/Alaska Fisheries Science Center, Seattle, WA, USA.
⁴University of Connecticut, Groton, CT, USA.

What is unique about the Bering Sea?

Physical

- Seasonal ice with advection to the south
- Tidal mixing sets up distinct biophysical regimes

Biological

- Ice plankton may be a major food source to higher trophic levels
- Benthic food chain is a major player

One prevailing paradigm: cold years are good for walleye pollock

Duffy-Anderson et al., 2014

regional coupled models

Climate models

Bering Sea

provide BCs/ICs to

Bering10K model

- Regional Ocean Modeling System (ROMS)
- Descendent of NEP5 (Danielson et al. 2012)
- 10 layers, 10-km grid
- Includes ice and tides
- CCSM bulk flux
- Details in Hermann et al. (DSR2, 2013, 2016)

Bering10K validation: the "Cold Pool"

DATA

MODEL

Bottom Temp in deg C, summer 2009

Sources of uncertainty in climate predictions (Hawkins and Sutton, 2009)

Downscaling Methods

- Choose a subset of IPCC models for atmospheric forcing and oceanic boundary conditions (physical/biological) for our regional model (Bering10K)
- Model choice based on
 - Local validation (replicate present ice cover the Bering Sea)
 - Availability of needed forcing variables
 - Availability of multiple emission scenarios
 - NPZ and OA variable output (not available for all models)
- Ocean Acidification dynamics (e.g. pH, aragonite saturation) are now being added to Bering10K (D. Pilcher)

Scenario/Structural uncertainty in this study

- A1B
 - CGCM3.1-t47
 - ECHOG
 - MIROC

- rcp4.5
 - GFDL
 - CESM
 - MIROC

- rcp8.5
 - GFDL
 - GFDL w/bio
 - CESM
 - CESM w/bio
 - MIROC

- A1B runs used for 2000-2040
- rcp4.5/rcp8.5 runs used for 2010-2100

CMIP5 projected air temperature in the EBS (rcp8.5)

(from NOAA climate change web portal)

Knutti et al. dendogram of CMIP3/CMIP5 control states (based on SST and precip fields)

Our chosen global models replicate ice climatology for the Eastern Bering Sea (M. Wang)

	Surface Temperature	SST	°C
SBT—	Bottom Temperature	SBT	°C
	Surface Salinity	SSS	psu
	lce cover	ICECOVER	fractional area
	Mixed Layer Depth	MLD	m (positive up coordinates; hence negative change denotes deepening MLD)
LCZ	Vertical Mixing (depth ave)	AKTS	m² s ⁻¹
	Nitrate + Ammonium (depth ave)	NUT	mgN m ⁻³
	Ice Phytoplankton	ICEPHYT	mgC m ⁻³
	Small plus Large Phytoplankton (depth ave)	PHYT	mgC m ⁻³
	Microzooplankton (depth ave)	MZOO	mgC m ⁻³
	Small Copepods (depth ave)	COPE	mgC m ⁻³
	Neocalanus (depth ave)	NCA	mgC m ⁻³
	Euphausiids (depth ave)	EUP	mgC m ⁻³
	Benthic detritus	DETBENTHIC	mgC m ⁻²
	Benthic infauna	BENTHIC	mgC m ⁻²
	Sea Surface Height	SSH	m
	Sea Surface cross-shelf velocity	UTOP	m s ⁻¹
	Sea Surface alongshelf velocity	VTOP	m s ⁻¹
	Air Temperature	TAIR	°C
	Air Pressure	PAIR	mbar
	Specific Humidity	QAIR	kg kg ⁻¹
	Zonal wind	UWIND	m s ⁻¹
	Meridional wind	VWIND	m s ⁻¹
	Downward longwave radiation	LWRAD_DOWN	W m ⁻²
	Downward shortwave radiation	SWRAD	W m ⁻²

Average present conditions

Change by 2050s (rcp8.5)

Change by 2090s (rcp8.5)

Can we expand this mini-ensemble?

- Dynamical downscaling is computationally expensive
- Statistics of mini-ensemble can be used to infer what would be obtained from a larger ensemble
- *Hybrid dynamical-statistical method* uses EOFs of all biophysical variables; multivariate correlation at the pattern level
 - How does the regional bell "ring" when struck in various ways

Multivariate Analysis: "Factor analysis of spatial EOFs"

- Calculate "traditional" spatial EOFs of each variable. This yields:
 - 1) A Spatial pattern (the "EOF" in the original units of that variable)
 - 2) A time series modulating the spatial pattern (the "PC", which has unit variance)
- Perform EOF analysis on that reduced set of time series to seek multivariate "factors" (i.e. *temporally correlated univariate spatial patterns*)
- *Project* atmospheric forcing from more CMIP5 members onto the multivariate patterns obtained from the mini-ensemble
- Get a much bigger ensemble of regional estimates!

The mathematical procedure

- 1. Decompose each variable into univariate EOF
- 2. Perform PC analysis on the multivariate collection of time series
- This now forms a new basis set explaining the original data
- Calculate the spatial patterns corresponding to that basis set
- Project any new forcing data onto that basis set to get the corresponding time function

$$V_{ilt} = \sum_{j} X_{jil} T_{jit}$$

$$T_{jit} = \sum_{k} M_{kji} \Gamma_{kt}$$

$$V_{ilt} = \sum_{k} C_{kil} \Gamma_{kt}$$

$$C_{kil} = \sum_{t} \Gamma_{kt} V_{ilt}$$

$$\Gamma^*_{ikt} = \left[\sum_{l} (V_{ilt} C_{kil})\right] / \left[\sum_{l} (C_{kil} C_{kil})\right]$$

univariate EOF (mode 1)

- Next step is to perform PC analysis on this set of univariate time series *Tjit*
- this yields a time series modulating all variables, with associated spatial patterns (multivariate modes) emphasizing covariance among variables

Time series of factor 1

CESM-rcp8.5 multivariate PCs

$$T_{jit} = \sum_{k} M_{kji} \Gamma_{kt}$$

Time series of factor 2

variable loadings suggest separate "heat" and "wind" modes

Large % Variance of training data explained using ONLY *TAIR PAIR UWIND VWIND* as "predictors"

CMIP5 projected air temperature in the EBS (rcp8.5)

(from NOAA climate change web portal)

Project CMIP5 output onto multivaraite modes to estimate change in sea bottom temperature (rcp8.5)

Individual realizations: change by 2090s

Average change by 2090s

Project CMIP5 output onto multivariate modes to estimate change in large crustacean zooplankton (rcp8.5)

Individual realizations: change by 2090s

Average change by 2090s

mean change rcp 4.5

mean change rcp 8.5

Conclusions

- 12 downscaling runs of global projections have been completed
- Bottom temperatures up to 5 degrees C warmer by 2100, highly dependent on emissions
- Multivariate method suggests independent "heat" and "wind" modes in several models
- "heat" mode is associated with biological change (e.g. enhanced microzooplankton, reduced euphausiids)
- Projection of "large ensemble" of forcings onto these modes yields a much bigger regional ensemble
- This method could (potentially) be used for other regions and time scales!