

ΝΟΑΑ

FISHERIES

Long-lived marine fish employing broadcast spawning may be resilient to environmental variability: selective sieve hypothesis

Alaska Fisheries Science Center

And other insights into Pacific ocean perch (POP) biology through genomic analysis

Jacek Maselko^{1,2}, Paul Hohenlohe², Kim Andrews^{2,3}

¹Auke Bay Laboratories, Alaska Fisheries Science Center ²University of Idaho Institute for Bioinformatics and Evolutionary Studies. ³JISAO, University of Washington and NOAA PMEL (Pacific Marine Environmental Lab)

PICES November 1, 2018

Next Generation DNA sequencing

DNA sequences contain information on the spatiotemporal dynamics of populations.

Next Generation DNA sequencing

DNA sequences contain information on the spatiotemporal dynamics of populations.

Q: How can we leverage this information to answer old questions and pose new ones?

Dispersal model of Pacific ocean perch (POP) larvae

DisMELS (Dispersal Model for Early Life History Stages), a ROMS based IBM particle movement model

William Stockhausen, NOAA

DisMELS predicted high lifetime dispersal

Predicted population structure = Panmixia

In silico Wright-Fisher simulation study: 12 isolated populations subject to DisMELS derived Transition matrix.

Observed limited lifetime dispersal

Observed population structure = Isolation by Distance (~100 km scale)

Figure 10. Isolation by distance pattern for Alaska Pacific ocean perch and map of collection sites Adapted from Palof et al. (2011).

Observed limited lifetime dispersal

Observed population structure = Isolation by Distance (~100 km scale)

Figure 10. Isolation by distance pattern for Alaska Pacific ocean perch and map of collection sites Adapted from Palof et al. (2011).

Q: How is this population structure maintained under strong dispersal?

Young of the Year POP collections

- **RAD seq** analysis of **507 POP** individuals.
- **11,146 SNPs and 398 individuals** after filtering.

Group assignments based on STRUCTURE analysis revealed 4 populations in the 2014 and 2015 YOY collections

PCA (1st vs 2nd component)

Pairwise Fst

	2014-A	2014-В	2014-C	2014-D	2015-A	2015-В	2015-C
2014-В	0.0232						
2014-C	0.0301	0.0138					
2014-D	0.0229	0.0085	0.0116				
2015-A	0.0008	0.0263	0.0321	0.0259			
2015-В	0.023	0.0001	0.0128	0.0067	0.026		
2015-C	0.0303	0.014	-0.0003	0.0112	0.0321	0.0132	
2015-D	0.0234	0.0085	0.0112	0.0001	0.0264	0.0079	0.0117

Spatial pattern of the population distribution in 2014 and 2015

D

Distribution of POP Populations in YOY catch in 2014

2014

2015

Distribution of POP Populations in YOY catch in 2015

Genome-phenotype and environment association

	<i>2014 Candidate</i>	<i>2015 Candidate</i>
Environmental Gradient	Selected Loci	Selected Loci
Latitude only	19	57
Collection Date only	67	71
Latitude & Date	27	73
Temperature	1	19
Chlorophyll concentration	16	159
Phenotype		
% Lipid	1	58
Weight~Length Residual	6	13

Selection along temporal and latitudinal gradient

Environmental Gradient	2014 Candidate Selected Loci	2015 Candidate Selected Loci
Latitude only	19	57
Collection Date only	67	71
Latitude & Date	27	73
Temperature		
Chlorophyll concentration <i>Phenotype</i>	16	159
% Lipid	1	58
Weight~Length Residual		

• Selection may be balancing the effects of gene flow due to dispersal.

Conclusions

Part 1, DisMELS dispersal and population structure

- Wide ranging dispersal is consistent with DisMELS model.
- POP larvae/YOY aggregates are mixtures of spawning populations consistent with DisMELS model.
- Selection along spatio-temporal gradients may be balancing dispersal resulting in the observed population structure.

Annual differences in patterns of selection

Environmental Gradient	<i>2014 Candidate Selected Loci</i>	<i>2015 Candidate Selected Loci</i>
Collection Date only		
Temperature	1	19
Chlorophyll concentration	16	159
Phenotype		
% Lipid	1	58
Weight~Length Residual	6	13

- More candidate selected loci in 2015 than in 2014
 - Stronger selection in 2015.
 - 2015 was a warm anomaly year with large sea bird die-offs

POP life history through energy density

Selection may be strongest during larval/YOY stage

Most vulnerable life stage

Selective sieve hypothesis

Conclusions Part 2, selective sieve hypothesis

- Selection pressure varies annually (selective sieve):
 - Cohort specific molecular selection signatures may possibly be used to estimate ages of adults.
- Possibly able to reconstruct environmental selection forces (i.e. temperature) based on patterns of selected alleles:
 - What were the environmental conditions 100 years ago based on the alleles found in 100 year old fish?
- Long lived species with multiple cohorts spawning over many years may be particularly resilient to environmental variability by maintaining a portfolio of adaptive alleles.

