PICES-2018 Annual Meeting:

Toward integrated understanding of ecosystem variability in the North Pacific

> Oct 25 – Nov 4, 2018 Yokohama, Japan

Spatial-temporal variations in the distribution and abundance of loligo squids in Shandong offshore of Yellow Sea and Bohai Sea in relation to environmental factors

Bin Wang¹, Yongjun Tian^{1*}, Yumeng Pang², Caihong Fu³, Peng Sun¹, Chi Zhang¹, Shuyang Ma¹, Rong Wan⁴ and Jianchao Li¹

¹Ocean University of China, Qingdao, China.
²Atmosphere and Ocean Research Institute, University of Tokyo.
³Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, British Columbia V9T 6N7, Canada.
⁴Shanghai Ocean University, Shanghai.
* E-mail: wbin9308@126.com

1.Background

2.Materials & Methods

3.Results

CONTENTS

4.Summary

5.Discussion

1 Background: Landings of Ioligo squids

Yellow Sea and Bohai Sea (Source: Sea around us) Shandong Province (Source:Shandong Fisheries Yearbook)

Among cephalopods in the Yellow Sea and Bohai Sea, loligo squids are the most important group.

1 Background: Life history of loligo squids

Semipelagic species

- Wide distribution in YS and BS
- Coastal waters migration for spawning

- Spawning peak from April to June
- 1-year lifespan
- Single reproduction

sustainable utilization and management in the Yellow Sea and Bohai Sea

2 Materials and methods

•Materials

Sampling sites:

177 stations in Shandong offshore

Sampling time:

201610, 201701, 201705, 201708 Data:

month, longitude-latitude, SST, SSS, Depth, mantle length, body weight, sex and maturity stages Methods

Pearson correlation analysis

- GAM:In(Y +0.01)= α +Month+s(Depth)+s(SST)+s(SSS)+ ϵ
- AIC=2k-2nL

Test the fit degree of model

Variance analysis

Month-categorical variable Y-abundance

3 Results: Basic biological characteristics

The dominant ML was bigger in spring and summer, while it was smaller in autumn.

3 Results: Basic biological characteristics

There were *significant differences* in ML and BW among seasons(p<0.01**)

3 Results: Temporal distribution of loligo squids

Significant differences

Loligo spp.>Octopus spp. >Sepia>others

Significant differences

autumn>summer
>winter>spring
(F=22.37,p<0.001**)</pre>

3 Results: Spatial distribution of loligo squids

3 Results: The relationship between abundance and environmental factors

influence factors	autumn	winter	spring	summer	Pearson correlation
Depth	-0.55**	0.53**	-0.13	-0.16	analysis
SST	0.01	0.75**	-0.01	-0.29**	•
SSS	-0.01	0.29**	-0.004	-0.03	
variables	df	R ²	DE%	AIC	Most important
SST	7.73	0.27	26.8	1792.26	Einel DE_42 40/
Depth	5.86	0.11	12.6	1866.89	AIC=1713.23
SSS	7.61	0.04	2.7	1912.38	
factors	SST	=========	======================================	SSS	
F	20.14	20.14		3.46	Variance analysis
Р	<0.01	**	<0.01**	<0.01**	variance analysis

Depth,SST and SSS had significant effects on the abundance of *loligo* spp.

3 Results: The relationship between abundance and environmental factors

4 Summary

1. The individuals were **bigger** and had higher gonadal maturity in **spring and summer** in comparison with **autumn**.

2. The abundance of loligo squids exhibited *distinct spatial and temporal variation patterns,* with highest abundance being in *autumn* and highest density occurring within *Haizhou Bay* (the primary spawning ground in YS).

3. SST, water depth, and salinity influenced the spatial-temporal variations in the distribution and abundance of loligo squids. The abundance *increased* with SST (*within 5-16°C*) and with salinity (>31.2 psu), and was higher at depths shallower than 40m.

5 Discussion

Growth

Spatial-temporal distribution

 Analyzing landings and environmental data over a wider area of the China Seas

Exploring these relationships with respect to specific oceanographic processes

✓ Other species

Octopus ocellatus or Todarodes pacificus

Exploring the relationship between fish and cephalopods Focus on the effects of environmental changes on the predation interactions

between them

PICES-2018 Annual Meeting:

Toward integrated understanding of ecosystem variability in the North Pacific

> Oct 25 – Nov 4, 2018 Yokohama, Japan

L F O Lab of Fishery Oceanography

Thanks for the financial support foor the symposium

and your attention!

Lab of Fisheries Oceanography *E-mail: yjtian@ouc.edu.cn