Fine-scale structure & mixing across the front along the Sanriku Coast

Sachi Itoh *et al.* (AORI, UTokyo)

We're

here

Internal Tide Chimney

Nutrient?

Coauthors

Hitoshi Kaneko (AORI), Miho Ishizu (JAMSTEC), Daigo Yanagimoto (AORI), Takeshi Okunishi (TNFRI), Hajime Nishigaki (Oita Univ.) and Kiyoshi Tanaka (AORI)

Financial Support

NEOPS by JSPS

Observation Support

Shinya Kouketsu (JAMSTEC) Ichiro Yasuda (AORI, UTokyo) Hiroaki Kawahara (EMS)

General motivation:

marine science support for fisheries in <u>Sanriku</u> areas

三陸海岸の漁師がタコや毛がにを直送します - 平運丸

2018/10/24 14:41

Diverse marine products in Sanriku areas

https://www.heiun.com

General motivation:

marine science support for fisheries in <u>Sanriku</u> areas

https://www.heiun.com

General motivation:

marine science support for fisheries in <u>Sanriku</u> areas

Post-tsunami

difficulties

Diverse marine products in Sanriku areas

Seafood calendar

https://www.heiun.com

2011 Tsunami

(Photos

in 2012)

Infrastructure lost

Piled up debris

How can Sanriku area be productive in summer?

Sanriku coastal areas are covered by nutrient-poor Tsugaru WC in summer

How can Sanriku area be productive in summer?

Roles of fronts & internal waves?

Sanriku coastal areas are covered by nutrient-poor Tsugaru WC in summer

How can Sanriku area be productive in summer?
Roles of fronts & internal waves?

Sanriku coastal areas are covered by nutrient-poor Tsugaru WC in summer

Interests of this study:

- Submesoscale

 structure of the
 front b/w Tsugaru
 WC & Oyashio
- Internal waves & mixing processes across the front

How can Sanriku area be productive in summer?
Roles of fronts & internal waves?

Sanriku coastal areas are covered by nutrient-poor Tsugaru WC in summer

Interests of this study:

- Submesoscale

 structure of the
 front b/w Tsugaru
 WC & Oyashio
- Internal waves & mixing processes across the front

Latitudinally uniform geostrophic flows

Latitudinally uniform geostrophic flows

Equations of ageostrophic components (x-z plane)

$$\frac{\partial u_{a}}{\partial t} - fv_{a} = -\frac{1}{\rho_{0}} \frac{\partial p_{a}}{\partial x}$$

$$\frac{\partial v_{a}}{\partial t} + u_{a} \frac{\partial v_{g}}{\partial x} + w_{a} \frac{\partial v_{g}}{\partial z} + fu_{a} = 0$$

$$0 = -\frac{\partial p_{a}}{\partial z} - \rho g$$

$$\frac{\partial u_{a}}{\partial x} + \frac{\partial w_{a}}{\partial z} = 0$$

$$\frac{\partial \rho_{a}}{\partial t} + u_{a} \frac{\partial \rho_{g}}{\partial x} + w_{a} \frac{\partial \rho_{g}}{\partial z} = 0$$
where
$$f \frac{\partial v_{g}}{\partial z} = -\frac{g}{\rho_{0} f} \frac{\partial \rho_{g}}{\partial x}$$

Latitudinally uniform geostrophic flows

Equations of ageostrophic components (x-z plane)

$$\frac{\partial u_{a}}{\partial t} - fv_{a} = -\frac{1}{\rho_{0}} \frac{\partial p_{a}}{\partial x}$$

$$\frac{\partial v_{a}}{\partial t} + u_{a} \frac{\partial v_{g}}{\partial x} + w_{a} \frac{\partial v_{g}}{\partial z} + fu_{a} = 0$$

$$0 = -\frac{\partial p_{a}}{\partial z} - \rho g$$

$$\frac{\partial u_{a}}{\partial x} + \frac{\partial w_{a}}{\partial z} = 0$$

$$\frac{\partial \rho_{a}}{\partial t} + u_{a} \frac{\partial \rho_{g}}{\partial x} + w_{a} \frac{\partial \rho_{g}}{\partial z} = 0$$
where
$$f \frac{\partial v_{g}}{\partial z} = -\frac{g}{\rho_{0} f} \frac{\partial \rho_{g}}{\partial x}$$

Assume a plane-wave solution $\exp\{i(kx + mz - \omega t)\}$ and solve five algebraic equations

Latitudinally uniform geostrophic flows

Equations of ageostrophic components (x-z plane)

components (x-z plane)
$$\frac{\partial u_a}{\partial t} - fv_a = -\frac{1}{\rho_0} \frac{\partial p_a}{\partial x}$$

$$\frac{\partial v_a}{\partial t} + u_a \frac{\partial v_g}{\partial x} + w_a \frac{\partial v_g}{\partial z} + fu_a = 0$$

$$0 = -\frac{\partial p_a}{\partial z} - \rho g$$

$$\frac{\partial u_a}{\partial x} + \frac{\partial w_a}{\partial z} = 0$$

$$\frac{\partial \rho_a}{\partial t} + u_a \frac{\partial \rho_g}{\partial x} + w_a \frac{\partial \rho_g}{\partial z} = 0$$
where
$$f \frac{\partial v_g}{\partial z} = -\frac{g}{\rho_0 f} \frac{\partial \rho_g}{\partial x}$$

Assume a plane-wave solution $\exp\{i(kx + mz - \omega t)\}$ and solve five algebraic equations

Dispersion relationship

$$\omega = \sqrt{F^2 - 2f(\partial v_g/\partial z)(k/m) + N^2(k^2/m^2)}$$
 where $F = \sqrt{f(f + \partial v_g/\partial x)}$

Latitudinally uniform geostrophic flows

Equations of ageostrophic components (x-z plane)

components (x-z plane)
$$\frac{\partial u_a}{\partial t} - fv_a = -\frac{1}{\rho_0} \frac{\partial p_a}{\partial x}$$

$$\frac{\partial v_a}{\partial t} + u_a \frac{\partial v_g}{\partial x} + w_a \frac{\partial v_g}{\partial z} + fu_a = 0$$

$$0 = -\frac{\partial p_a}{\partial z} - \rho g$$

$$\frac{\partial u_a}{\partial x} + \frac{\partial w_a}{\partial z} = 0$$

$$\frac{\partial \rho_a}{\partial t} + u_a \frac{\partial \rho_g}{\partial x} + w_a \frac{\partial \rho_g}{\partial z} = 0$$
where
$$f \frac{\partial v_g}{\partial z} = -\frac{g}{\rho_0 f} \frac{\partial \rho_g}{\partial x}$$

Assume a plane-wave solution $\exp\{i(kx + mz - \omega t)\}$ and solve five algebraic equations

Dispersion relationship

$$\omega = \sqrt{F^2 - 2f(\partial v_g/\partial z)(k/m) + N^2(k^2/m^2)}$$
 where $F = \sqrt{f(f + \partial v_g/\partial x)}$

*Dispersion relationship is modified by horizontal & vertical shears, indicated by Rossby & Richardson numbers **Ro** and **Ri**

$$Ro = \frac{1}{f} \frac{\partial v_g}{\partial x} \qquad Ri = \frac{N^2}{\left(\frac{\partial v_g}{\partial z}\right)^2}$$

Observations: R/V *Daisan Kaiyo maru* cruise in July 2013

- Underway CTD (int. of 3–5 km)
- VMP (x3 casts) (vertical mixing)
- ShipboardADCP

+: UCTD

o: VMP

^: CTD surveys by lwate pref.

Underway CTD transect (OH line)

 Sharp front (10–30 km) on the shelf from subsurface to the bottom

(not resolved by past CTD observations of $\Delta x \sim 20$ km)

- Complex interleaving structure of TS across the front
- Similar pattern for the other two transects

Underway CTD transect (OH line)

 Sharp front (10–30 km) on the shelf from subsurface to the bottom

(not resolved by past CTD observations of $\Delta x \sim 20$ km)

- Complex interleaving structure of TS across the front
- Similar pattern for the other two transects

Energy dissipation rate ε

Vertical diffusivity K_{ρ}

Contour: σ_{θ}

Longitude [°E]

Energy dissipation rate ε

Vertical diffusivity K_{ρ}

ε & K_ρ are elevated along the front

• E:

front: ~10-8

bg: $<10^{-9}$

Κρ

front: ~10-4

bg: $<10^{-5}$

Contour: σ_{θ}

Energy dissipation rate ε

Vertical diffusivity K_{ρ}

ε & K_ρ are elevated along the front

• E:

front: ~10-8

bg: $<10^{-9}$

Κρ

front: ~10-4

bg: $<10^{-5}$

Contour: σ_{θ}

Energy dissipation rate ε

Vertical diffusivity K_{ρ}

ε & K_ρ are elevated along the front

• E:

front: ~10-8

bg: $<10^{-9}$

Κρ

front: ~10-4

bg: <10-5

Contour: σ_{θ}

Enhancing biological production?

142.4

142.8

143

142.6

Longitude [°E]

100

142

142.2

Observation in June (2 weeks before)

Enhancing biological production?

Longitude [°E]

Observation in June (2 weeks before)

Chl a is elevated along the front at subsurface

Internal Tide Chimney

By analogy with "inertial chimney" by Lee & Niiler (1998)

Dispersion relationship (collected by k/m)

$$\omega = \sqrt{N^2 \left(\frac{k}{m} - \frac{fv_z}{N^2}\right)^2 + F^2 - \frac{f^2v_z^2}{N^2}}$$
 Minimum $F^2 - f^2v_z^2/N^2$ at $k/m = fv_z/N^2$ (<0)

Internal Tide Chimney

By analogy with "inertial chimney" by Lee & Niiler (1998)

Dispersion relationship (collected by k/m)

$$\omega = \sqrt{N^2 \left(\frac{k}{m} - \frac{f v_z}{N^2}\right)^2 + F^2 - \frac{f^2 v_z^2}{N^2}}$$

Minimum F^2 – $f^2v_z^2/N^2$ at $k/m=fv_z/N^2$ (<0)

By analogy with "inertial chimney" by Lee & Niiler (1998)

Dispersion relationship (collected by k/m)

$$\omega = \sqrt{N^2 \left(\frac{k}{m} - \frac{f v_z}{N^2}\right)^2 + F^2 - \frac{f^2 v_z^2}{N^2}}$$

Minimum F^2 – $f^2v_z^2/N^2$ at $k/m=fv_z/N^2$ (<0)

(almost) free propagation

By analogy with "inertial chimney" by Lee & Niiler (1998)

Dispersion relationship (collected by k/m)

$$\omega = \sqrt{N^2 \left(\frac{k}{m} - \frac{f v_z}{N^2}\right)^2 + F^2 - \frac{f^2 v_z^2}{N^2}}$$

Minimum F^2 – $f^2v_z^2/N^2$ at $k/m=fv_z/N^2$ (<0)

(almost) free propagation

By analogy with "inertial chimney" by Lee & Niiler (1998)

Dispersion relationship (collected by k/m)

$$\omega = \sqrt{N^2 \left(\frac{k}{m} - \frac{f v_z}{N^2}\right)^2 + F^2 - \frac{f^2 v_z^2}{N^2}}$$

Minimum F^2 – $f^2v_z^2/N^2$ at $k/m=fv_z/N^2$ (<0)

(almost) free propagation

- Offshore upward wave packet propagation
- Trapped within frontal zone; broken through reflection and interaction

By analogy with "inertial chimney" by Lee & Niiler (1998)

Dispersion relationship (collected by k/m)

$$\omega = \sqrt{N^2 \left(\frac{k}{m} - \frac{f v_z}{N^2}\right)^2 + F^2 - \frac{f^2 v_z^2}{N^2}}$$

Minimum F^2 – $f^2v_z^2/N^2$ at $k/m=fv_z/N^2$ (<0)

(almost) free propagation

- Offshore upward wave packet propagation
- Trapped within frontal zone; broken through reflection and interaction

- Tidal energy is confined within the frontal band
- Nutrient supply at frontal zone by vertical mixing

Plane-wave assumption is valid for wave scales << mean flow scale,

Validity

Plane-wave assumption is valid for wave scales << mean flow scale,

while analytical and numerical solutions are consistent for IWs with scales ≤ mean flow scale (Kunze 1985; Whitt and Thomas 2013)

Validity

Plane-wave assumption is valid for wave scales << mean flow scale,

while analytical and numerical solutions are consistent for IWs with scales ≤ mean flow scale (Kunze 1985; Whitt and Thomas 2013)

"Internal wave chimney" processes may be valid for IWs ≤ front scale (10–30 km)

Validity

Plane-wave assumption is valid for wave scales << mean flow scale,

while analytical and numerical solutions are consistent for IWs with scales ≤ mean flow scale (Kunze 1985; Whitt and Thomas 2013)

"Internal wave chimney" processes may be valid for IWs ≤ front scale (10–30 km)

Applicability

Costal currents around the shelf edge with the coast to their right (left) in the N. (S.) Hemisphere

Coastal currents in PICES region?

1. Submesoscale front is developed between Tsushima WC and Oyashio from subsurface to the bottom

Take-home message

- 1. Submesoscale front is developed between Tsushima WC and Oyashio from subsurface to the bottom
- 2. Minimum frequency for IWs is lowered by strong vertical shear of geostrophic velocity along the front

Take-home message

- 1. Submesoscale front is developed between Tsushima WC and Oyashio from subsurface to the bottom
- 2. Minimum frequency for IWs is lowered by strong vertical shear of geostrophic velocity along the front
- 3. By trapping IWs within the strong shear band, "Internal Tide Chimney" mechanism intensify vertical mixing along the front, which may be responsible for high productivity in this area even during summer

Take-home message

- 1. Submesoscale front is developed between Tsushima WC and Oyashio from subsurface to the bottom
- 2. Minimum frequency for IWs is lowered by strong vertical shear of geostrophic velocity along the front
- 3. By trapping IWs within the strong shear band, "Internal Tide Chimney" mechanism intensify vertical mixing along the front, which may be responsible for high productivity in this area even during summer

Reference

Itoh et al (2016, Journal of Oceanography, 72(1)

= Special section: Oceanographic observations after the 2011 earthquake off the Pacific coast of Tohoku) https://rdcu.be/96fB

Salinity & velocity @50m & 100m

squares: <33.2, o: >33.2, <33.6, ^: >34

UV transect (shipboard ADCP)

Vertical Shear of geostrophic velocity

ADCP Shear & characteristics of M2 IWs

