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Outline

• How to quantify ecosystem impacts of physical 
drivers

• Data assimilation: L4D-Var for BGC models
• NRT system
• Results from the warm blob



The recent warm 
blob, a major 
physical driver

• ~3oC multiannual marine 
heatwave

• What are the ecosystem 
impacts of this 
anomalous event?

• How would we quantify 
these?

Figure from Barth et al. (2018)



• Observations showed unusual 
species cascading through 
region.

• What about primary production?

• Ocean color data is useful, but has real gaps

Ecosystem Impacts



Model the ecosystem
NEMURO

1-Day SeaWiFS

NEMURO model

But no matter how good the model is, 
unavoidable errors exist due to 
uncertainty 

• initial conditions 
• lateral and surface forcing 
• model error



One approach to reduce uncertainty is 
to use data assimilation

• We use 4-dimenionsional 
variational (4D-Var) data 
assimilation

• With BGC model, we 
assume variables are 
lognormal (when 
transformed, errors are 
normal)

Logarithm 
transformation

Surface chl-a

Campbell (1995)



Combined G4DVar and L4DVar using 
augmented state vector

Gaussian Cost function

Lognormal Cost function

• Cost functions can be 
combined in terms of 
augmented state vector 
and error covariances
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is more common in physical applications ( Stammer et al., 2002; 
Powell et al., 2008; Forget, 2010 ). In some cases, model deficien- 
cies or inconsistencies have been identified through unsuccessful 
parameter estimation when the model is ultimately unable to rep- 
resent observed features ( Fennel et al., 2001 ). 

Although estimating state variables and model parameters us- 
ing variational methods is similar, one important difference ex- 
ists for biogeochemical problems. In both cases, control variables 
are optimally adjusted to minimize a cost function that is often 
defined as a quadratic misfit between the observations and cor- 
responding model states. The difference lies in the statistics of 
the control variables and their errors. In parameter estimation, it 
is generally assumed a priori that the parameters are consistent 
with a Gaussian distribution, although recent work suggests this 
is not always the case ( Mattern et al., 2012; Fiechter et al., 2013 ). 
However, the probability density function (PDF) of biogeochemi- 
cal state variables is not Gaussian but better represented by a log- 
normal distribution (e.g., see Campbell, 1995  for analysis of satel- 
lite chlorophyll). In addition, biogeochemical variables are positive- 
definite. If a prior Gaussian distribution is assumed to estimate the 
state variables, it is possible that the maximum likelihood value of 
the posterior PDF may be negative. This means that the prior Gaus- 
sian distribution assumption can lead to negative posterior concen- 
trations for biogeochemical state variables after fitting the obser- 
vations. In contrast, a lognormal distribution constrains the opti- 
mal posterior estimation to be always positive. Thus, it is desirable 
to reformulate the variational method using the assumption of a 
lognormal distribution for biogeochemical variables for computing 
posterior model state estimation. 

Fletcher and Zupanski (2006a ) introduce a 3-dimensional vari- 
ational method based on the assumption that variables are log- 
normally distributed, and it is expanded to a 4-dimensional varia- 
tional method (4DVar) in Fletcher (2010) . Song et al. (2012) trans- 
form biological variables to log-space where their distribution is 
more Gaussian and apply an incremental form of this method to a 
one dimensional nutrient-phytoplankton-zooplankton (NPZ) model 
in a twin experiment. In the incremental approach, small adjust- 
ments, or increments, to the state vector (in this case, model ini- 
tial conditions) are determined using a tangent linear assumption 
( Courtier et al., 1994 ). A maximum likelihood value of the pos- 
terior PDF is determined in log-space and then transformed back 
to the original space using the exponential function. Their results 
show significant improvement in ecosystem model state estimates 
for both observed and unobserved variables. This method implic- 
itly preserves the positive-definite property because the exponen- 
tial function maps any input to a positive value. Fletcher and Jones 
(2014) introduce a multiplicative incremental variational data as- 
similation method in which the optimization problem is expressed 
with geometric tangent linear model and does not go through the 
transformation to log-space. 

Although 4DVar with the assumption of lognormally distributed 
variables and errors (L4DVar) is more appropriate for biogeochem- 
ical data assimilation, its practical implementation in a realistic 
configuration can be problematic. In conventional 4DVar that a pri- 
ori assumes variables and errors are Gaussian distributed (G4DVar), 
the optimal state estimates are often obtained from the incre- 
mental formulation that seeks the optimal increment to the back- 
ground state. In this case, the increment is assumed to be small 
compared to the prior (or background) and its evolution reason- 
ably approximated by linearized model dynamics about a nonlin- 
ear model trajectory. This incremental approach reduces the op- 
timization problem to finding the minimum of a quadratic cost 
function and is formally equivalent to a truncated Gauss–Newton 
approach ( Lawless et al., 2005  ). However, in the incremental for- 
mulation of L4DVar, the cost function remains non-quadratic un- 
der the incremental assumption because of the logarithmic con- 

version of variables. The multiplicative incremental cost function 
in Fletcher and Jones (2014) is also non-quadratic. Consequently, 
the minimization algorithm requires several times more computa- 
tion than incremental G4DVar. 

In this study, we formulate an incremental L4DVar in quadratic 
form by making a first order, linear approximation for the non- 
linear terms using a Taylor expansion. The quadratic form of in- 
cremental L4DVar uses the same tangent linear model, adjoint 
model and minimization algorithm as incremental G4DVar, making 
the implementation straightforward. We evaluate its performance 
based on a nutrient-phytoplankton-zooplankton-detritus (NPZD) 
model coupled to an ocean circulation model, the Regional Ocean 
Modeling System (ROMS), in a twin experiment framework config- 
ured for the California Current System (CCS). Results of quadratic 
form of incremental L4DVar from the twin experiment is compared 
with that of G4DVar and the discussion about the properties of 
quadratic incremental L4DVar follows. 
2. Incremental 4DVAR 
2.1. Gaussian 4DVar 

One fundamental assumption in variational methods, though 
not always rigorously correct ( Wunsch and Heimbach, 2007  ), is 
that the distributions of observational errors and control variables 
are close to Gaussian. Bayes’ theorem can be used to derive the 
cost function for variables having a Gaussian distribution ( Lorenc, 
1986 ). 
J G (x 0 ) = 1 

2 (x 0 − x b, 0 ) T B −1 (x 0 − x b, 0 ) 
+ 1 

2 
N o ∑ 

i =1 (y i − x o i ) T R −1 
i (y i − x o i ) , (1) 

where x 0 = [ x 1 , x 2 , . . . , x n ] T 0 is a state vector at the ini- 
tial time, x b , 0 represents the background initial condition, y i = 
[ y 1 , y 2 , . . . , y m i ] T i is the i th observation set out of a total number 
of N o , and x o 

i = [ x o 1 , x o 2 , . . . , x o m i ] T i represents the model state evalu- 
ated at the observation points. Matrices, B and R i , represent back- 
ground and observational error covariance matrices, respectively. 
In general, the control variables may include surface and lateral 
boundary conditions and model errors, but in the case considered 
the control vector comprises only the model initial conditions. The 
vector, x o 

i , can be expressed in terms of the nonlinear model M i, 0 
that integrates the initial condition to t = t i , and the observation 
operator H i that maps integrated model solutions from the model 
space to the observation locations. Thus x o 

i = H i (M i, 0 (x 0 )) , and we 
seek the solution x a , 0 that minimizes (1) . 

The cost function J G can be rewritten in the incremental form 
( Courtier et al., 1994 ), 
J G (δx 0 ) = 1 

2 δx T 0 B −1 δx 0 
+ 1 

2 
N o ∑ 

i =1 (d i − H i M i, 0 δx 0 ) T R −1 
i (d i − H i M i, 0 δx 0 ) , (2) 

where d i = y i − H i (M i, 0 (x b, 0 )) , and matrices, H i and M i , 0 , are tan- 
gent linear representations of H i and M i, 0 , respectively. The cost 
function J G is now quadratic in δx 0 , and the computation for 
δx 0 reduces to the linear problem, A δx 0 = h , where A = B −1 + ∑ N o 

i =1 M T 
i, 0 H T 

i R −1 
i H i M i, 0 is the Hessian matrix of J G in (2) and h = 

∑ N o 
i =1 M T 

i, 0 H T 
i R −1 

i d i . In realistic atmospheric and oceanic problems, 
the size of A often exceeds 10 8 ∼ 10 9 , which makes computation 
of the inverse of A difficult or impossible. However, the direct in- 
verse computation can be avoided using an iterative, optimization 
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(13) 

and (x o 
b,i ) j is the j th element of the vector x o 

b,i . Eq. (12) can then 
be expanded as 
ln (x o b,i + δx o i ) ≈ ln x o b,i + L i H i M i, 0 (x a, 0 − x b, 0 ) 

= ln x o b,i + L i H i M i, 0 (x b, 0 ◦ exp (δg 0 ) − x b, 0 ) , (14) 
and can be further linearized as 
ln (x o b,i + δx o i ) ≈ ln x o b,i + L i H i M i, 0 (x b, 0 ◦ (1  n + δg 0 ) − x b, 0 ) 

= ln x o b,i + L i H i M i, 0 x b, 0 ◦ δg 0 
= ln x o b,i + L i H i M i, 0 X b, 0 δg 0 , (15) 

where X b , 0 is a diagonal matrix comprised of the elements of x b , 0 . 
As a result, the cost function for incremental L4DVar in (8) can 

be written 
J L (δg 0 ) 

= 1 
2 δg T 0 B −1 

L δg 0 
+ 1 

2 
N o ∑ 

i =1 
(
p i − L i H i M i, 0 X b, 0 δg 0 )T 

R −1 
L,i (p i − L i H i M i, 0 X b, 0 δg 0 ), 

(16) 
where p i = ln y i − ln x o 

b,i , and (16) is now quadratic with respect to 
δg 0 . The gradient of J L with respect to δg 0 is 
∂ J L 

∂δg 0 = B −1 
L δg 0 − X T b, 0 N o ∑ 

i =1 M T 0 ,i H T i L T i R −1 
L,i (p i − L i H i M i, 0 X b, 0 δg 0 ), 

(17) 
and the Hessian is 
∂ 2 J L 
∂δg 2 0 = B −1 

L + X T b, 0 
( 

N o ∑ 
i =1 M T 0 ,i H T i L T i R −1 

L,i L i H i M i, 0 
) 

X b, 0 . (18) 
The optimal solution δg 0 can be estimated using the Lanczos 

form of conjugate gradient algorithm as described in Section 2.1 . 
After all iterations, the solution in log-space can be easily con- 
verted to x a , 0 using (9) . 

The quadratic cost function (16) has two additional matrices 
X b , 0 , L i compared to the cost function of incremental G4DVar in 
(2) . These two matrices, however, are trivial to handle because they 
are diagonal matrices and represent weighting factors for each vec- 
tor element. Thus the additional computational expense resulting 
from these two matrices is negligible. 
3. Data assimilation of surface chlorophyll data 
3.1. Model 

In this section, we compare the performance of incremental 
G4DVar and quadratic incremental L4DVar within the twin experi- 
ment framework using a NPZD model coupled to ROMS. The NPZD 
model has four, nonlinearly interacting components: phytoplank- 
ton ( P ), zooplankton ( Z ), nutrient ( N ) and detritus ( D ) ( Powell et al., 
2006; Fiechter et al., 2009 ). Specifically, P uptakes nutrient ( N ) and 
grows following a Michaelis–Menten formulation; it is consumed 
by Z with an Ivlev formulation. The mortality rate of both P and 
Z are linearly proportional to their concentrations and their loss is 
added to D . The concentration of D decreases with the remineral- 
ization of D to N that is linearly proportional to its concentration. 

Table 1  
Parameter names, values and units for the NPZD model. 

Parameter name Value Units 
Light 
Extinction coefficient for sea water 0 .067 m −1 
Photosynthetically active radiation (PAR) 0 .43 Dimensionless 
Phytoplankton 
Self-shading coefficient 0 .02 m 2 mmol N −1 
Initial slope of P –I curve 0 .02 m 2 W −1 
Uptake rate for nitrate 1 .0 day −1 
Half-saturation constant for nitrate 1 .0 mmol N m −3 
Mortality rate 0 .1 day −1 
Zooplankton 
Grazing rate 0 .65 day −1 
Ivlev constant 1 .4 Dimensionless 
Excretion efficiency 0 .3 Dimensionless 
Mortality rate 0 .145 day −1 
Detritus 
Remineralization rate 0 .1 day −1 
Sinking velocity 40 m day −1 

It also redistributes vertically by sinking with prescribed vertical 
sinking velocity. The parameters used in the NPZD model are listed 
in Table 1 . 
3.2. Setting 

The CCS region was chosen for the twin experiment. Our do- 
main covers the region ranging 134–115.5 °W and 30–48 °N with a 
horizontal resolution of 1/3 ° and 30 vertical levels. This model do- 
main has been used in other studies for ROMS 4DVar, and it is 
described in detail by Broquet et al. (2009, 2011) and Moore et al. 
(2011a) . 

To prepare the initial condition for NPZD variables and the 
background error covariance matrix, a 45-year physical-biological 
coupled forward run was executed. The model was forced us- 
ing fluxes derived from CORE2 (Common Ocean-Ice Reference Ex- 
periments; ( Large and Yeager, 2009 )), and open boundary condi- 
tion data was taken from monthly output from the Simple Ocean 
Data Assimilation (SODA, version 2.1.6) data set with half-degree 
resolution ( Carton and Giese, 2008 ). The initial condition for N 
was taken from monthly climatological values (World Ocean Atlas 
2001). Other variables, for which climatological data is not avail- 
able, had uniform concentrations horizontally and vertically with a 
constant value (0.1 mmol N m −3 ). Similar to the initial conditions, 
the open boundary condition for N was derived from climatology 
and a constant boundary value was chosen for P, Z and D . 

The simulations for incremental G4DVar and quadratic incre- 
mental L4DVar started from January 1st, 2001. The initial condi- 
tions for the physical circulation were taken from a data assimi- 
lation run described by Broquet et al. (2009) (i.e., a physical data 
assimilation product on the same model domain within the same 
model framework). Surface forcing fields were derived from daily 
averaged atmospheric conditions produced by the Coupled Ocean 
Atmosphere Mesoscale Prediction System (COAMPS) ( Doyle et al., 
2009 ). Open boundary conditions for physical variables were taken 
from the monthly SODA data set. The initial and boundary condi- 
tions for the NPZD variables were obtained from the 45-year for- 
ward run. The coupled NPZD-ROMS model was integrated for 4 
years from 2001 to 2004. 

Fig. 1 compares the model simulation with the Sea-viewing 
Wide Field-of-view Sensor (SeaWiFS) chlorophyll data during those 
4 years. The simulated P is converted to carbon using a C:N = 
(106 mol C):(16 mol N) Redfield ratio and then to chlorophyll us- 
ing a fixed C:Chl ratio of (50 g C):(1 g Chl), although a spatially 
dependent C:Chl ratio may be desirable to reflect variability in 
this value within the diverse phytoplankton of the CCS ( Goebel 
et al., 2010 ). The annually averaged chlorophyll data from the 
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1-Day SeaWiFS

Model –No Assimilation

Model –With Assimilation

Mattern et al. (2017)

Fully coupled 4D-Var using NEMURO 
Surface chl-a, Year 2000



UCSC Coupled Physical/Biogeochemical System 
ROMS 4D-Var, 2011-present

(http://oceanmodeling.ucsc.edu/ ccsra_nem_2017a/)
• 1/10o CCS ROMS configuration

• Online since July 2014

• 4-day assimilation cycles

• Assimilates SST, SSH, SCHL, glider T/S, 
Argo T/S, HF RADAR velocities

• Model output available on a TDS

• Figures of model fields posted

• Calendar searchable



SST > 1 σ
March 2014 until June 2016

The Blob and El Niño as seen by 
a bgc/physical reanalysis



Central CCS Diatom fields, July-Sept Averages

Average in time (JAS) and
in space (cross-shore distance)

All 4 years

Annual average 
diatom stock low
during 2014-2015

Distance from shore



Diatom budget
(summertime average)

dP/dt = advection + diffusion + new production 
+ recycled production + grazing + excretion
+ respiration + mortality

dP/dt = advection + diffusion + growth + losses

Mostly a balance between 
growth and losses with a  
small contribution by 
advection nearshore.

Distance from shore



Summertime dynamical balances 
reveal starkly different new 

primary production JAS 2014

JAS 2016JAS 2015

dP/dt = advection + diffusion + new production 
+ recycled production + grazing + excretion
+ respiration + mortality

Distance from shoreDistance from shore



Explanation
• Changes in new production can be due to 

changes in
– light
– temperature 
• higher temp -> higher growth rates

– nutrient flux

• Note anomalous summer lows in 2014/2015

2013 2014 2015 2016



Physical nitrate transport
(monthly averages, averaged to 50km from shore)

Vertical nitrate flux
across 30 m depth

Vertical velocity
across 30 m depth

Equatorward 
wind stress

Nitrate
at 30 m depth

Vertical nitrate flux predominantly results from vertical 
velocity (94% of variance) 

2013 2014 2015 20162013 2014 2015 2016



79% of variance in new production accounted for by 
nitrate flux, 67% by wind stress

Diatom budget terms 
(monthly averages, averaged to 50km from shore)

Non-conservative changes
due to  assimilation cycles

New production

Recycled production

diffusion

advection 2013 2014 2015 2016



• ROMS 4D-Var BGC data assimilation operating routinely in the CCS.

• A sensible dynamical interpolation from sparse data 

• Offers a platform for dynamical analysis to understand ecosystem 
impacts of physical drivers.

• During 2014-2015 (Blob)
– Low Diatom annual average concentration
– Recycled production not particularly anomalous.  
– New production was anomalous.
– Springtime new production not significantly impacted
– Summertime new production significantly lowered
– Vertical nitrate flux dominated by vertical velocity (and wind sress), not 

nutricline depth

• A multi-decadal reanalysis is underway (1997 to present)
• See H. Song talk on Friday for more on L4D-Var DA

Summary


