Scaling of the Mixed Layer Depth under Surface Heating by Using LES

Y. Choi and Y. Noh

Department of Atmospheric Sciences
Yonsei University, Korea

Noh, Y., and Y. Choi, 2018:

Comments on "Langmuir Turbulence and Surface Heating in the Ocean Surface Boundary Layer." *J. Phys. Oceanogr.*

Ocean Mixed Layer

- strong turbulence due to convection or wind stress
- vertically uniform temperature
- important factor in vertical mixing
- determines downward transport of heat, and thus sea surface temperature
 → affects the climate
- determines how much deep, nutrient rich water will be brought to the surface to feed the phytoplankton

Seasonal Variation of the Ocean Mixed Layer

During the heating season, a seasonal thermocline is formed.

(Kraus and Turner 1967)

1) Integration of TKE equation over MLD (h)

$$\Rightarrow \boxed{w_e \Delta B} = Q_0 + 2m_1 u_*^3 / h - \varepsilon_m$$
 source/sink terms of TKE within the mixed layer

 w_e : entrainment velocity

 ΔB : buoyancy jump across MLD

 Q_0 : surface buoyancy flux u_* : frictional velocity

 ε_m : mean dissipation within the mixed layer

Surplus of TKE within the mixed layer is used to deepen MLD.

(Kraus and Turner 1967)

1) Integration of TKE equation over MLD (h)

$$\Rightarrow \boxed{w_e \Delta B} = Q_0 + 2m_1 u_*^3 / h - \varepsilon_m$$
 source/sink terms of TKE within the mixed layer

 w_e : entrainment velocity

 ΔB : buoyancy jump across MLD

 Q_0 : surface buoyancy flux u_* : frictional velocity

 ε_m : mean dissipation within the mixed layer

Surplus of TKE within the mixed layer is used to deepen MLD.

2) total dissipation over $h \propto source$ terms

$$h\varepsilon_m = m_d u_*^3 + 0.25(1-n)h[|Q_0| - Q_0]$$

$$\Rightarrow w_e \Delta B = 0.5h[(1-n)|Q_0| + (1+n)Q_0] + 2mu_*^3$$

(Kraus and Turner 1967)

1) Integration of TKE equation over MLD (h)

$$\Rightarrow \boxed{w_e \Delta B} = Q_0 + 2m_1 u_*^3 / h - \varepsilon_m$$
 source/sink terms of TKE within the mixed layer

 w_e : entrainment velocity

 ΔB : buoyancy jump across MLD

 Q_0 : surface buoyancy flux u_* : frictional velocity

 ε_m : mean dissipation within the mixed layer

Surplus of TKE within the mixed layer is used to deepen MLD.

2) total dissipation over $h \propto source$ terms

$$h\varepsilon_m = m_d u_*^3 + 0.25(1-n)h[|Q_0| - Q_0]$$

$$\Rightarrow w_e \Delta B = 0.5h[(1-n)|Q_0| + (1+n)Q_0] + 2mu_*^3$$

3) $w_e = (-\partial h/\partial t) = 0$ during the formation of a thermocline $(Q_0 > 0)$,

$$\Rightarrow$$
 $h=2mL_{MO}$ $L_{MO}=u_*^3/Q_0$: Monin-Obukhov length scale

(Kraus and Turner 1967)

1) Integration of TKE equation over MLD (h)

$$\Rightarrow \boxed{w_e \Delta B} = Q_0 + 2m_1 u_*^3 / h - \varepsilon_m$$
 source/sink terms of TKE within the mixed layer

 w_e : entrainment velocity

 ΔB : buoyancy jump across MLD

 Q_0 : surface buoyancy flux u_* : frictional velocity

 ε_m : mean dissipation within the mixed layer

Surplus of TKE within the mixed layer is used to deepen MLD.

2) total dissipation over $h \propto source$ terms

$$h\varepsilon_m = m_d u_*^3 + 0.25(1-n)h[|Q_0| - Q_0]$$

$$\Rightarrow w_e \Delta B = 0.5h[(1-n)|Q_0| + (1+n)Q_0] + 2mu_*^3$$

3) $w_e = (-\partial h/\partial t) = 0$ during the formation of a thermocline $(Q_0 > 0)$,

$$\Rightarrow$$
 $h=2mL_{MO}$ $L_{MO}=u_*^3/Q_0$: Monin-Obukhov length scale

⇔ balance between the generation of turbulence by wind stress
 vs. the suppression of turbulence by surface heating

The downward transport of momentum is limited to the Ekman length scale.

$$\Rightarrow \lambda = u_* / f$$
Ekman Coriolis
length scale parameter

⇒ Is the depth of a thermocline affected by the Coriolis force?

Investigation of the Formation of a Seasonal Thermocline Using LES (Goh and Noh, OD 2013)

- The Coriolis force is found to play a fundamental role.

- 40°N A thermocline is formed at a certain depth.
 No downward heat transport across the thermocline.
- Eq. Heat continues to propagate downward to the deeper ocean.

 A well-defined thermocline is not formed.

Depth of a Seasonal Thermocline

(Goh and Noh, OD 2013)

$$h \propto (L_{MO}\lambda)^{1/2} \propto u_*^2 / (Q_0 f)^{1/2}$$

*
$$\lambda = U_{\star} / f$$
 Ekman length scale $L_{\! MO} = u_{*}^3 / Q_0$ Monin-Obukhov length scale

$$L_Z (= (L_{MO} \lambda)^{1/2})$$
: Zilitinkevich scale

They suggested the scale of the depth of a seasonal thermocline as Zilitinkevich scale.

Response of the Upper Ocean to Surface Heating in the N. Pacific

(Lee et al. JGR 2015)

When a seasonal thermocline is formed from the homogeneous layer, $h \propto L_z$

Scaling Surface Mixing/Mixed Layer Depth under Stabilizing Buoyancy Flux (Yoshikawa, JPO 2015)

 L_{FKD} = Ekman length scale

Z02 = Zilitinkevich length scale

MOL = Monin-Obukhov length scale

- L_z is more suited for observed mixed layer depth than other length scales

Interpretation of the New Scale of h (L₂)

(Goh and Noh, OD 2013)

Kraus & Turner (1967)

$$w_e \Delta B = 0.5h[(1-n)|Q_0| + (1+n)Q_0] + 2mu_*^3$$

 $w_e = 0$ during the formation of a seasonal thermocline $(Q_0 > 0)$,

$$\Rightarrow h \propto L_{MO} (= u_*^3 / Q_0)$$

Interpretation of the New Scale of h (L₂)

(Goh and Noh, OD 2013)

Kraus & Turner (1967)

$$w_e \Delta B = 0.5h[(1-n)|Q_0| + (1+n)Q_0] + 2mu_*^3$$

 $w_e = 0$ during the formation of a seasonal ther ocline $(Q_0 > 0)$,

$$\Rightarrow h \propto L_{MO} (= u_*^3 / Q_0)$$

If the contribution of wind stress decreases with Ro (= $\lambda/h(=\frac{u_}{fh})$)

$$w_e \Delta B = 0.5 h [(1-n) |Q_0| + (1+n)Q_0] + \frac{2m u_*^3 (\lambda/h)}{2m u_*^3 (\lambda/h)} \quad \lambda : \text{Ekman length}$$

Interpretation of the New Scale of h (L₂)

(Goh and Noh, OD 2013)

Kraus & Turner (1967)

$$w_e \Delta B = 0.5h[(1-n)|Q_0| + (1+n)Q_0] + \frac{2mu_*^3}{2mu_*^3}$$

 $w_e = 0$ during the formation of a seasonal ther ocline $(Q_0 > 0)$,

$$\Rightarrow h \propto L_{MO} (= u_*^3 / Q_0)$$

If the contribution of wind stress decreases with Ro (= $\lambda/h(=rac{u_}{fh})$)

$$w_e \Delta B = 0.5 h [(1-n)|Q_0| + (1+n)Q_0] + \frac{2mu_*^3(\lambda/h)}{\lambda : \text{Ekman length}}$$
 $\lambda : \text{Ekman length}$

$$\Rightarrow h \propto (L_{MO}\lambda)^{1/2}$$
 (= L_Z : Zilitinkevich scale)

Interpretation of the New Scale of h (L,)

(Goh and Noh, *OD* 2013)

Kraus & Turner (1967)

$$w_e \Delta B = 0.5h[(1-n)|Q_0| + (1+n)Q_0] + 2mu_*^3$$

 $w_e = 0$ during the formation of a seasonal ther ocline $(Q_0 > 0)$,

$$\Rightarrow h \propto L_{MO} (= u_*^3 / Q_0)$$

If the contribution of wind stress decreases with Ro (= $\lambda/h(=rac{u_}{fh})$)

$$w_e \Delta B = 0.5 h [(1-n)|Q_0| + (1+n)Q_0] + \frac{2mu_*^3(\lambda/h)}{\lambda : \text{Ekman length}}$$
 $\lambda : \text{Ekman length}$

$$\Rightarrow h \propto (L_{MO}\lambda)^{1/2}$$
 (= L_Z : Zilitinkevich scale)

The scale for the seasonal thermocline should be L_7 .

→ What about diurnal thermocline?

Diurnal Variation of the Ocean Mixed Layer

- night Surface cooling generates turbulence, and deepens the mixed layer depth.
- day Surface heating suppresses turbulence, and generates a diurnal thermocline.

Formation of the Diurnal Thermocline

Observation result (Brainerd and Gregg. 1993)
Evolution of **potential temperature** and **dissipation**during the daytime

LES result (Noh and Goh 2009) Evolution of **buoyancy** under surface heating

Formation of the Diurnal Thermocline

Observation result (Brainerd and Gregg. 1993) Evolution of **potential temperature** and **dissipation** during the daytime

LES result (Noh and Goh 2009) Evolution of **buoyancy** under surface heating

(104m/s2)

Then, how is the depth of the diurnal thermocline determined?

Langmuir Turbulence and Surface Heating in the Ocean Surface Boundary Layer (Pearson et al., JPO 2015)

- h is scaled by L_{MO}
- The slower increase of h than L_{MO} is explained by the effect of the **preexisting thermocline** (h_0) .

How is the depth of a diurnal thermocline scaled?

- Is it scaled by the Monin-Obukhov scale or by the Zilitinkevich scale?
- How is it affected by the preexisting thermocline?

Investigation of the Formation of a Diurnal Thermocline Using LES

LES model - PALM

model domain & grid : Lx = Ly = 300 m, H = 80m,

$$\Delta x = \Delta y = \Delta z = 1.25 \text{ m}$$

forcing

- Constant heat flux : $Q_o(=5.0*10^{-7} \text{m}^2\text{s}^{-3})$, $0.5Q_o$, $0.25Q_o$

- wind stress : $u^* = 0.01 \text{ m/s}$

- rotation effect : $f = 0.25, 0.5, 1, 1.4 \times 10^{-4} \text{ s}^{-1}$

- LC & WB

• Integration

- 12 hr spin-up with $Q_0 = 0$

- from the homogeneous layer and the preexisting thermocline(h₀).

- Stratification below $h_0: N^2=1.0, 5.0\times 10^{-4} s^{-1}$

• the definition of h: the depth which has maximum stratification(N²)

Evolution of buoyancy profile

Preexisting thermocline X

small f

h₀: depth of the preexisting thermocline
 h: MLD with preexisting thermocline
 h*: MLD without preexisting thermocline

 The formation of a diurnal thermocline is strongly affected by f.

$$ightarrow h = rac{L_{MO}}{L_{MO} / h_0 + A}$$
 (Pearson et al. 2015)
When $h_0
ightarrow \infty$, $h
ightharpoonup L_{MO} \left(= rac{u_*^3}{Q_0}
ight)$

Evolutions of buoyancy profile

Preexisting thermocline X

h₀: depth of the preexisting thermocline
 h: MLD with preexisting thermocline
 h*: MLD without preexisting thermocline

 The formation of a diurnal thermocline is strongly affected by f.

$$\rightarrow h = \frac{L_{MO}}{L_{MO}/H_0 + A} \quad \text{(Pearson et al. 2015)}$$
 When $h_0 \rightarrow \infty$, $h \propto L_{MO} \left(= \frac{u_*^3}{Q_0} \right)$

Evolutions of buoyancy profile

Preexisting thermocline X

h₀: depth of the preexisting thermocline
 h: MLD with preexisting thermocline
 h*: MLD without preexisting thermocline

 The formation of a diurnal thermocline is strongly affected by f.

$$\rightarrow h = \frac{L_{MO}}{L_{MO} / h_0 + A} \text{ is not proper!}$$

When
$$h_0 \to \infty$$
, $h \propto L_{MO} \left(= \frac{u_*^3}{Q_0} \right)$

Evolutions of buoyancy profile

h₀: depth of the preexisting thermocline h: MLD with preexisting thermocline

h*: MLD without preexisting thermocline

- h is not affected by h₀, if h₀>> h*
- h can be larger than h*, when h* ~ h₀.

$$\rightarrow$$
 $h = \frac{L_{MO}}{L_{MO} / h_0 + A}$ is not proper!

Scaling of the depth of a diurnal thermocline

(no preexisting thermocline)

- h should be scaled by L_z , instead of L_{MO} as in the case of a seasonal thermocline.
- h(diurnal thermocline depth) ~ 0.7L,

The effect of the preexisting thermocline

Orange: $1.0f_0$ Green: $0.5f_0$

Blue

 $: 0.25f_0$

h₀: depth of the preexisting thermocline
h: MLD with preexisting thermocline
h*: MLD without preexisting thermocline

- h is not affected by h_0 , when $L_z/h_0 < 0.9$
- h can be larger than h^* , as L_Z/h_0 increases, but ultimately limited by h_0 , since stratification suppresses downward heat transport.
- Scatter appears at larger L₇/h₀

Langmuir Turbulence and Surface Heating in the Ocean Surface Boundary Layer (Pearson et al., JPO 2015)

- When u^* and f are constant, data actually represent the relation $h \propto L_Z \propto Q_0^{-1/2} \leftrightarrow \propto L_{MO}^{1/2}$
- Slower increase of h than L_{MO} is not due to the effect of h_0 .

Conclusion

- The depth of a diurnal thermocline(h) should be scaled by L_z , not by L_{MO} .
- h is not affected by the preexisting thermocline(h_0), when $L_z/h_0 < 0.9$.
- h can be larger than h_0 , when $L_Z/h_0 > 0.9$, but ultimately limited by h_0 , since stratification suppresses downward heat transport.