Internal waves, tides, eddies and winddriven currents across the inner shelf

John (Jack) A. Barth, James A. Lerczak, Jacqueline McSweeney and Stephen D. Pierce & Inner Shelf collaborators

Inner Shelf: Opening the Black Box Connecting the Coastal Ocean and the Surf Zone

The first and th

Nonlinear internal waves and bores

wind-driven cross-shelf circulation

Warm
Raised D

Warm
High D

Translent rith election

Well
mixed
surfzone

Inner-shelf

D,T alongshore-patchy
~ Vertically uniform

 $t_{7z=-6 \,\mathrm{m}}$ Fedderson (SIO)

rip currents and eddies

Internal wave convergence lines & influence on biology

"bait balls" in echosounder murres lined up offshore

feeding dolphins

foam line

OBJECTIVES: INNER SHELF (5-50 m)

- measure & understand processes that contribute to exchange
 - shoreward transport of material by nonlinear internal waves and bores
 - 2. cross-shelf eddy flux from current instabilities
- Use in-water data to interpret and understand remotelysensed data (X-band radar, aircraft, satellite)
- produce an inner-shelf data set that will be used to verify and advance numerical ocean circulation models

field worked: calm conditions in September; increasing waves in October

Deploy a high-spatial resolution moored array – in collaboration with ISDRI colleagues – from the mid-shelf to the edge of the surfzone

OSU: 8 bottom landers w/ADCPs; 11 temperature string moorings with pressure, GusTs, & chipods (total of 80 moorings on shelf; another 80 in surfzone)

Internal Tide Generation

$$\gamma = |\nabla \mathbf{h}| \left(\frac{\omega^2 - f^2}{N_b^2 - \omega^2}\right)^{-0.5}$$

 $\gamma < 1$ transmission

 $\gamma = 1$ generation

 $\gamma > 1$ reflection

Kumar et al. 2018

Repeatedly measure the cross-shelf and vertical distribution of hydrographic and velocity fields across the mid to inner shelf and relate them to wind forcing

CTD, ADCPs (hull & pole), GusTs, bowchain, radiometer, radar

But what about the subtidal hydrography & circulation ...

repeated flux box around mooring array ~10 times around box; ~2.5 tidal cycles

Cross-shelf mid-Oceano transects 8-10 Sept 2017

Surface-intensified, southward upwelling jet overriding weak northward flow

Classic wind-driven Ekman layer offshore, and the conshore return flow beneath

Summary

- Internal bore fronts coherent along-shore ~40 km
 - internal waves can vary <1 km along shore
- 2 internal bores every semidiurnal period
 - 80% of them are observable to the 15m isobath
 - 30% can be tracked to the 9m isobath
- Changes in the wave guide within the shoaling region and over the 2 months
 - = upwelling and wind relaxation
- Next up: flux estimates from ship and moorings

Collaborators: Mick Haller, Alex Simpson, Jen MacKinnon, Amy Waterhouse, John Colosi, Jim Moum, Johannes Becherer, Jamie MacMahan and many others