Nov. 1, 2018 14:40 – 15:00

Mixing and sediment transport induced by nonlinear internal wave breaking in coastal regions

OEiji Masunaga

Ibaraki University

Oliver B. Fringer

Stanford University

Robert S. Arthur

Lawrence Livermore National Laboratory

<u>Hidekatsu Yamazaki</u>

Tokyo Univ. of Mar. Sci. & Tech.

Acknowledgement

Internal tide breaking on a shallow slope

Internal waves and sediment

Internal waves and sediment

Masunaga et al., 2017JMS

Offshore ward convergent flows are generated by IW breaking.

Question:

How nonlinear internal tides and their breaking influence mass and sediment transports in **3D** fields?

Location and background

Elevation [m] Elevation [m] Elevation [m] 2000 1000 -1000 -2000 -3000 -4000 -500 -1000 -1500 -2000 -4000 -6000 -8000 -10000 35.5 Distance [km] Latitude (N) 34.5 **Tides** 139.5 Distance [km] Longitude (E) Longitude (E) Tidal elevations η [m] Julian date Temperature MAB [m]

Location and background Elevation [m] Elevation [m] Elevation [m] 2000 1000 -1000 -2000 -3000 -4000 -500 -1000 -1500 0 500 -2000 -4000 -6000 -8000 -10000 2000 45 35.5 20 40 35 Distance [km] Latitude (N) 34.5 30 34 25 5 10 15 20 25 125 135 140 145 150 155 130 139 139.5 140 Distance [km] Longitude (E) Longitude (E) $\log_{10} \varepsilon \text{ (Wkg}^{-1}\text{)}$ Temperature (degC) 20 -10 -6.519 -7 E-20 E-20 18 -7.5-30 -30 17 -8 -40 -40 16 -8.5 20 22 00 02 04 Hour (May 29-30,2017) 06 06 18 Hour (May 29-30,2017)

3D Numerical setup (SUNTANS)

Model: SUNTANS (Fringer et al., 2006)

Grid: Unstructured grid. The maximum $\Delta x = 50$ km near the boundary and

the minimum $\Delta x = 500$ m near the coast of Izu-chain Island.

Forcing: Barotropic tidal forcing using 4 main tidal constituents

(S2, M2, K1, O1)

Initial condition: Data from World Ocean Atlas.

Sediment setup: The critical shear stress = 0.1 N/m^2 .

Settling velocity: 1×10^{-4} m/s (8.64 m/day)

(Typical sinking velocity of silts and marine aggregates)

Internal tides

↑ Isotherm depth displacement

Sediment transports due to internal tides

Sediment: settle-able particles, sediments, planktons, aggregates, flocs (ws = 1×10^{-4} m/s)

↑ SS in intermediate nepheloid layers

Sediment transports due to internal tides

BC tides generates strong resuspension and INLs.
BT tides do not generate INLs.

Sediment transports due to internal tides

↑time averaged sediment at the depth of the main thermocline

†Sediment flux at the depth of the main thermocline

BC residual flows due to internal tides

BC residual flows due to internal tides

Subsurface Residual flows (BT + BC)

Subsurface BC Residual Flows

BC residual flows are higher than BT

BC residual flows due to internal wave breaking

BC residual flow is generated by mixing due to IW breaking

Kinetic energy budget

←Time averaged vertically integrated KE

The total KE can be divided into BC and BT parts $KE_{Total} = KE_{BT} + KE_{BC} + \frac{KE_{BTBC}}{KE_{BTBC}}$

Each part also can be divided into fluctuation and residual parts

$$\overline{KE_{Total}} = \overbrace{KE_{BThigh}}^{Barotropic\ part} + \overline{KE_{BTR}} + \overbrace{KE_{BChigh}}^{Baroclinic\ part} + \overline{KE_{BCR}}$$

Overbar: time average

$$KE_{BTR} = 1/2 \rho(\overline{\mathbf{u}}_{BT}^{2}) \quad KE_{BCR} = 1/2 \rho(\overline{\mathbf{u}}_{BC}^{2})$$

$$\overline{\mathbf{u}}_{BT} = \frac{1}{\overline{H}} \int_{-d}^{\overline{\eta}} \overline{\mathbf{u}} dz \quad \overline{\mathbf{u}}_{BC} = \overline{\mathbf{u}} - \overline{\mathbf{u}}_{BT}$$

$$< \overline{KE_{BThigh}} > = < \overline{KE_{BT}} > - < \overline{KE_{BTR}} >$$

$$< \overline{KE_{BChigh}} > = < \overline{KE_{BC}} > - < \overline{KE_{BCR}} >$$

→BC residual part explains 5% of the total KE.

SS flux budget

SS flux can also be separated into four

$$S_{fBChigh} = C(\mathbf{u}_{BC} - \overline{\mathbf{u}}_{BC}) \quad S_{fBCR} = C\overline{\mathbf{u}}_{BC}$$

The residual part largely contributes to the SS flux (82%). \rightarrow opposite to KE.

Tidal forcing transport SS back and forth, but it does not contribute to the net transport.

The contribution of S_{fBCR} becomes the largest contributor (43%) faraway from the coast (depth > 500 m).

Conclusions

- 1. Mixing due to non-linear internal tides enhance baroclinic residual circulations along the thermocline.
- 2. The half of the residual KE is explained by the BC part.
- 3. BC residual circulations transport sediments from nearshore toward offshore, which results in intermediate turbidity layers.
- 4. High frequency tidal motions explain 90% of the KE, however, high frequency parts do not largely contribute to the net SS flux.

 → The net SS flux can be explained by residual circulation.

Thank you,