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Figure SPM.8 | Maps of CMIP5 multi-model mean results for the scenarios RCP2.6 and RCP8.5 in 2081–2100 of (a) annual mean surface temperature 
change, (b) average percent change in annual mean precipitation, (c) Northern Hemisphere September sea ice extent, and (d) change in ocean surface pH. 
Changes in panels (a), (b) and (d) are shown relative to 1986–2005. The number of CMIP5 models used to calculate the multi-model mean is indicated in 
the upper right corner of each panel. For panels (a) and (b), hatching indicates regions where the multi-model mean is small compared to natural internal 
variability (i.e., less than one standard deviation of natural internal variability in 20-year means). Stippling indicates regions where the multi-model mean is 
large compared to natural internal variability (i.e., greater than two standard deviations of natural internal variability in 20-year means) and where at least 
90% of models agree on the sign of change (see Box 12.1). In panel (c), the lines are the modelled means for 1986−2005; the filled areas are for the end 
of the century. The CMIP5 multi-model mean is given in white colour, the projected mean sea ice extent of a subset of models (number of models given in 
brackets) that most closely reproduce the climatological mean state and 1979 to 2012 trend of the Arctic sea ice extent is given in light blue colour. For 
further technical details see the Technical Summary Supplementary Material. {Figures 6.28, 12.11, 12.22, and 12.29; Figures TS.15, TS.16, TS.17, and TS.20}
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Multi-year persistence of the 2014/15

North Pacific marine heatwave

Emanuele Di Lorenzo1* and Nathan Mantua2

Between the winters of
2013/14 and 2014/15 during the strong North American drought, th

e northeast
Pacific exp

erienced

the largest marine heatwave
ever record

ed. Here we combine observatio
ns with an ensemble of climate model simulations

to show that teleco
nnections

between the North Pacific and the weak 2014/2015
El Niño linked the atmospheric forcing

patterns o
f this even

t. These teleconnec
tion dynamics from the extratropic

s to the tropics dur
ing winter 201

3/14, and
then

back to the extratropic
s during winter 201

4/15, are a key source of multi-year p
ersistence

of the North Pacific atm
osphere.

The correspond
ing ocean anomalies map onto known patterns of North Pacific decadal va

riability, s
pecifically

the North

Pacific Gyre Oscillation
(NPGO) in 2014 and the Pacific Decadal O

scillation (PDO) in 2015. A large ensemble of climate

model simulations pr
edicts that

the winter
variance of

the NPGO-
and PDO-like p

atterns inc
reases und

er greenho
use forcing

,

consistent
with other stud

ies sugges
ting an increase in

the atmospheric e
xtremes that lea

d to drought ov
er North America.

During the fall of 2013
a large warm temperature anomaly

developed
in the upper ocea

n along the axis of the
North

Pacific Cur
rent. As th

e anomaly spread
over a broa

d region

of the Gulf of Alaska (GOA) during the winter of 2013/14, it

reached a record-br
eaking amplitude wit

h sea surface
temperature

anomalies (SSTa) exceeding
three standard deviations

(⇠3 �C)

(Fig. 1a and Supplementary Fig. 1, see
Methods for

a description

of the datasets and definition
of the SSTa indices). T

he onset

and growth of this unu
sual water

mass anomaly is attribute
d to

forcing associated
with a persistent

atmospheric ridge over the

northeast P
acific

1 (Fig. 1b) th
at is conne

cted to the North
Pacific

Oscillation
(NPO), a leading pattern of atmospheric variability

2 .

Extreme amplitude and persistence
in the NPO pattern is also

implicated in
the record

drought co
nditions th

at a�ected
California

in the winter
of 2013/14

3–5 and its expressi
on is a known

precursor

of El Niño
conditions

6,7 . By the sum
mer and fall of 2014

, the warm

anomalies reache
d the Pacific

coastal bou
ndary of N

orth America,

and althoug
h the amplitude in t

he GOA and the nor
thern Calif

ornia

Current Sy
stem (CCS) were

reduced, re
cord-high SSTa were

found

in the regio
ns of south

ern and Baj
a California

(Fig. 1c). In
the winter

of 2014/15,
the SSTa ov

er the entir
e northeast

Pacific re-i
ntensified,

exceeding
again the 3 �C threshold (Fig. 1e and Supplementary

Fig. 1). Th
e record-br

eaking high-temperature an
d the multi-year

persistence
of this warm anomaly, here referred to as a marine

heatwave
8 , have had unpreceden

ted impacts on multiple trophic

levels of th
e marine ecosy

stem and socio-econ
omically important

fisheries. Associated
ecosystem

impacts included low primary

productivit
y9 , 11 new

warm-water cope
pod species

to the north
ern

California
Current sh

elf/slope re
gion

10 , a massive influ
x of dead or

starving Ca
ssin’s aukle

ts (sea bird
s) onto Pac

ific Northw
est beaches

from October through December 2014
11 , a large whale unusual

mortality event in the western GOA in 2015
12 , and a California

sea lion unusual m
ortality event in California

from 2013–2015
13 .

Severe, neg
ative socio-econ

omic impacts resulted from the 2015

harmful algal b
loom that extend

ed from southern California
to

southeast A
laska, the la

rgest ever r
ecorded

14 . Toxins pro
duced by th

e

extreme harmful algal blo
om contaminated shell

fish inWashington,

Oregon and California,
prompting prolo

nged closures fo
r valuable

shellfish fisheries. A
lthough the socio-econ

omic consequenc
es of

this climate event ne
ed to be fur

ther evalua
ted, it is po

ssible that t
he

northeast P
acific warm

anomaly of 2014–
15 is the most ecologic

ally

and econom
ically signif

icant marine heatw
ave on record.

Although
previous studies

1,3,15–17 have documented the onset

and nature of the atmospheric variability
that forced

the winter

2013/14 SSTa, the
dynamics underlying

the persistence
and re-

intensificat
ion of the anom

aly in 2015 are st
ill unclear.

The relativ
e

role of oce
an internal dy

namics versus d
irect atmospheric fo

rcing

in driving the
expression

of the 2015
SSTa has n

ot been examined.

It is also unclear if t
he January

–February–
March (JFM) 2014 and

JFM 2015 SSTa patterns (Fig. 1a and e) are dynamically linked,

and if they are, how?
There is good evidence that atmospheric

teleconnec
tions of tro

pical origin
played a key role in the winter

2013/14 sea-level p
ressure anomalies (SLPa)

4,15–17 (Fig. 1b),
and

that the variance of this anomaly pattern may intensify under

greenhouse
forcing

3,4 , hence leading to more extremes in ocean

temperature an
d western US precipit

ation. This
raises the q

uestion

of whether
tropical/ex

tratropical
teleconnec

tions were
also impor-

tant in driving the
exceptiona

l SSTa in the winter
of 2014/15.

Atmospheric forcing of the marine heatwave

To underst
and the rol

e of atmospheric fo
rcing in driving the

strong

North Pacific warm anomalies, we begin by inspecting
maps of

the seasonal ev
olution of SSTa and SLPa between JFM 2014 and

JFM 2015 (Fig. 1). T
he patterns of the peak SSTa in JFM 2014

and 2015 show important spa
tial di�eren

ces. Whereas in 2014 the

core SSTa a
re centred

in the GOA (Fig. 1a) an
d exhibit a N

PGO-

like expression
18 or Victoria Pattern

19 , in 2015 the largest war
m

anomalies are fur
ther to the

east and ex
tend along

the entire P
acific

North American coastal bou
ndary, rese

mbling the expression
of

the PDO
20 , also referred to as the ‘ARC’ patte

rn (Fig. 1e). T
hese

di�erences
in SSTa patter

ns are mirrored by a change in
the SLPa

patterns, w
hich exhibit a st

rong dipole
system in JFM 2014, typic

al

of the NPO
2 (Fig. 1b), a

nd a more pronounce
d single SLPa low

in 2015, resem
bling the express

ion of a deeper
and southeastw

ard

extended Aleutian Low (Fig. 1f). T
o measure the strength of the

2014 and 2015 anomaly patterns we
compute the av

erage SSTa
in
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Increasing Coupling Between NPGO and PDO Leads

to Prolonged Marine Heatwaves

in the Northeast Pacific
Youngji Joh1

and Emanuele Di Lorenzo1

1School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA

Abstract The marine heatwave of 2014/2015 in the Northeast Pacific caused significant impacts on

marine ecosystems and fisheries. While several studies suggest that land and marine heatwaves may

intensify under climate change, less is known about the prolonged multiyear nature (~2 years) of the

Northeast Pacific events. Examination of reanalysis products and a 30-member climate model ensemble

confirms that prolonged multiyear marine heatwaves are linked to the dynamics of the two dominant modes

of winter sea surface temperature variability in the North Pacific, the Pacific Decadal Oscillation (PDO), and

the North Pacific Gyre Oscillation (NPGO). Specifically, we find a significant correlation between winter warm

NPGO anomalies and the following winter PDO arising from extratropical/tropical teleconnections. In the

model projections for 2100 under the RCP8.5 scenario, this NPGO/PDO 1 year lag correlation exhibits a

significant positive trend (~35%) that favors more prolonged multiyear warm events (>1°C) with larger

spatial coverage (~18%) and higher maximum amplitude (~0.5°C for events>2°C) over the Northeast Pacific.

Plain Language Summary Between the winters of 2014 and 2015 the Northeast Pacific

experienced the largest and longest marine heatwave ever recorded in the instrumental record. A

distinguishing feature of this event is themultiyear persistence of the ocean warm anomalies from one winter

to the other. By analyzing and comparing different reanalysis products and an ensemble of climate model

projections for 2100, we find that the observational trend for stronger winter to winter persistence of

anomalies in the Northeast Pacific is consistent with climate model projections under the RCP8.5 radiative

forcing scenario. We link this trend to an increase coupling between the two dominant modes of North

Pacific decadal variability.
1. IntroductionThe 2013/2015 marine heatwave of the Northeast Pacific was characterized by the strongest ocean tempera-

ture extremes ever recorded in the North Pacific (Anderson et al., 2016; Baxter & Nigam, 2015; Bond et al.,

2015; Hartmann, 2015; Hobday et al., 2016; Peterson et al., 2016; Wang et al., 2014) and by an unusual persis-

tence that spanned the winters of 2013/2014 and 2014/2015 (Di Lorenzo &Mantua, 2016), culminating in one

of the strongest El Niño events of the twentieth century in the fall/winter of 2015/2016. The progression of

the event followed distinct spatial and temporal winter patterns in the ocean and atmosphere that

closely resemble the two dominant modes of variability of sea surface temperature and sea level pressure

anomalies (SSTa and SLPa). Specifically, the spatial structures of the January-February-March (JFM) SSTa in

2013/2014 and 2014/2015 are captured by the 2nd and 1st principal components of the North Pacific SSTa

(Di Lorenzo & Mantua, 2016) (Figure S1 in the supporting information). In the Northeast Pacific, these modes

are commonly referred to as the North Pacific Gyre Oscillation (NPGO) (Di Lorenzo et al., 2008) and the Pacific

Decadal Oscillation (PDO) (Mantua et al., 1997) (Figure S1). The similarity between the marine heatwave pat-

terns and the mode of Pacific decadal variability suggests that the statistics and persistence of these ocean

extremes are linked to the dynamics underlying the North Pacific modes.

Using historical reanalysis products and a climate model ensemble, this study provides a diagnostic of ocean

extremes statistics in past observations and in future model projections under the radiative forcing scenario

RCP8.5. The goal of this study is to (1) confirm the hypothesis that prolonged ocean extremes events follow

recurrent patterns with a transition from a winter NPGO-like pattern to PDO-like pattern in the following win-

ter and (2) examine how the coupling between these modes via tropical/extratropical teleconnections is

changing under a warmer climate favoring more prolonged winter to winter warm events.
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By solving the LIM system, we obtain

x̂(t + τ) = exp(Lτ)x(t) = G(τ)x(t)
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By solving the LIM system, we obtain

x̂(t + τ) = exp(Lτ)x(t) = G(τ)x(t)

As data consist of SSTA and SLPA, our model system is

[ ̂s(t + τ)
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