

**2019 PICES Annual Meeting** 

# An evaluation of the short-term prediction skill of FIO-ESM in the North Pacific

Yajuan Song<sup>1</sup>, Yiding Zhao<sup>2</sup>, Zhenya Song<sup>1</sup>, and Xunqiang Yin<sup>1</sup>

The First Institute of Oceanography (FIO), Ministry of Natural Resources, Qingdao, China
Beihai Branch, Ministry of Natural Resource, Qingdao, China

2019.10.25



# Background



## **FIO-ESM and Assimilation method**

Content



## **Prediction results**



## Wave effect on SSTA prediction



**Conclusion and discussion** 



#### Sea Surface Temperature



- North Pacific SST can strongly influence ENSO, and modulate the weather and climate over the North America, Canada and East Asia on the different time scale.
- Accurate predictions of SST, as well as precipitation, are crucial for social management and disaster prevention.



#### North Pacific seasonal forecast

| Model                                            | Time      | Method                    | Prediction ability                                                | References               |
|--------------------------------------------------|-----------|---------------------------|-------------------------------------------------------------------|--------------------------|
| canonical<br>correlation analysis<br>(CCA) model | 1982-2000 | Linear statistical method | Not include the effects<br>of Pacific SST on<br>climate system,   | Landman&M<br>ason (2001) |
| linear inverse<br>model (LIM)                    | 1951-2000 | Linear statistical method | The ability to predict extreme event is low                       | Alexander et al. (2008)  |
| "two tier" model                                 | 1998-2002 | Two tier method           | Not include air-sea interaction processes                         | Auad et al. (2004)       |
| CCCma-CHFP2                                      | 1979-2008 | Air-land-sea<br>coupled   | more comprehensive                                                | Lienert<br>(2011)        |
| NCEP-CFSv1                                       | 1981-2006 | Air-land-sea<br>coupled   | physical processes,<br>reasonably reflect the<br>sea-air boundary | Wen et al. (2012)        |
| NCEP-CFSv2                                       | 1982-2010 | Air-land-sea-ice coupled  | conditions                                                        | Hu et al. (2014)         |



#### SSTA Predictable period



To make accurate prediction

- High-quality of ocean observation data
- Initialize method improvement
- Improve physical processes in climate model



#### **Ocean wave effect**





Ocean wave maintain the global mechanical energy balance, it play an important role in the climate system. (Wang and Huang, 2004)

# 1. Background

Wave process

The "too cold tongue" SST biases in the eastern tropical Pacific and the reversed equatorial SST gradient in the Atlantic can be improved by including the wave-induced mixing.



50a averaged SST (251-300a). Up: Exp1-Levitus, Down: Exp2-Exp1 Exp1: CCSM3 without Bv Exp2: with Bv (Song et al., 2012, J. Geophys. Res.)



# Background



## **Model and Assimilation method**

Content



## **Prediction results**



## Wave effect on SSTA prediction



**Conclusion and discussion** 



$$Bv = \alpha \iint_{\vec{k}} E(\vec{k}) \exp(2kz) d\vec{k} \frac{\partial}{\partial z} \left[ \iint_{\vec{k}} \omega^2 E(\vec{k}) \exp(2kz) d\vec{k} \right]^{1/2}$$

(Qiao et al., 2004)

### 10

## 2. Model and assimilation method

SLA (Sea Level Anomalies) daily data

#### Assimilation data

 AVISO (Archivage, Validation et Interpretation des donnes des Satellite Oceanographiques)

■ Horizontal resolution: 1/3° ×1/3°

SST daily data

- NOAA/National Climate Data Center
- Horizontal resolution: 1/4° × 1/4°



**Satellite Observations** 

## 2. Model and assimilation method

assimilation method

Ensemble Adjusted Kalman Filter (EAKF)

1. Use observation to calculate the model adjustment at observation points

$$\Delta y_i = \left[ \left( \frac{\overline{y}^m}{1+r^2} + \frac{y^o}{1+r^{-2}} \right) + \left( \frac{y_i^m - \overline{y}^m}{\sqrt{1+r^2}} \right) \right] - y_i^m$$
$$r = \frac{\sigma_y^m}{\sigma^o}$$



2. Calculate the corresponding adjustment of variables at each model grid point

$$x_i^a = x_i^m + \frac{c_{xy}^m}{\left(\sigma_y^m\right)^2} \cdot \Delta y_i$$
$$c_{xy}^m = \frac{1}{N} \sum_{i=1}^N \left(x_i^m - \overline{x}^m\right) \cdot \left(y_i^m - \overline{y}^m\right)$$





| Experiment   | time      | ensemble | Prediction start | Prediction period |
|--------------|-----------|----------|------------------|-------------------|
| assimilation | 1993-2019 | 10       | ×                | ×                 |
| hindcase     | 1993-2019 | 10       | Every month      | 6 month           |

OBS data:

SST: AVHRR

Temp: EN4

Precipitation: GPCP

RMSE = 
$$\sqrt{\frac{1}{T} \sum_{t=1}^{T} (S_t - O_t)^2}$$

S: simulation

O: obs

$$ACC_{i,j} = \frac{\operatorname{cov}(S_t, O_t)}{\sigma_s \sigma_o}$$

cov(St,Ot) :covariance of model prediction and obs anomaly

 $\boldsymbol{\sigma}$  : standard deviation of SST anomaly



# Background



## **FIO-ESM and Assimilation method**

Content



## **Prediction results**



## Wave effect on SSTA prediction



**Conclusion and discussion** 

#### **Assimilation results**

#### RMSE of SSTA







#### **SST prediction skills**



**RMSE** of SSTA

#### **SST prediction skills**

ACC of SSTA

1-α=95%



#### SST prediction skills

CFSv2:

- Air-land-ice-ocean coupled
- Operational system of the North American
- With best performance in NMME (North American Multi-Model Ensemble)



Skills of different models in Nino3.4 prediction

(Barnston et al., 2012)

#### SST prediction skills

CFSv2:

- Air-land-ice-ocean coupled
- Operational system of the North American
- With best performance in NMME (North American Multi-Model Ensemble)



(Hu et al., 2014, J. Climate)

#### precipitation prediction skills



- □ Skillful precipitation predictions mostly reside in the tropical oceans.
- □ FIOESM shows high skills at mid-latitudes.

#### NPV index



NPV index

- □ The hindcasts results (color lines) can basically catch the observation variability (grey line).
- □ The development of cold and warm events in the North Pacific also can be reflected.
- It is notable that the NPV index exhibits different skills in different time periods, which shows interannual and seasonal dependence.

**NPV index** 

ENSO and NPV are in phase and out of phase

FIO-ESM





# Background



## **FIO-ESM and Assimilation method**

Content



## **Prediction results**



## Wave effect on SSTA prediction



**Conclusion and discussion** 

| EXP      | Time | Initial state     | Wave model   |
|----------|------|-------------------|--------------|
| Exp.wave | 2016 | EAKF assimilation | $\checkmark$ |
| Exp.nowa | 2016 | EAKF assimilation | ×            |



(Exp.wave – OBS) – (Exp.nowa - OBS)



- •SST substantially decrease in mid-latitudes
- •SST slightly increases in low latitudes

Heat budget analysis

Mix layer temperature equation:

$$\frac{\partial T}{\partial t} = -u \frac{\partial T}{\partial x} - v \frac{\partial T}{\partial y} - w \frac{\partial T}{\partial z} + \frac{K_h}{\Delta z} \frac{\partial T}{\partial z} \bigg|_{z=\Delta z} + \frac{Q_T}{\rho_0 C_p \Delta z}$$
$$Tt = Q = Q_u + Q_v + Q_w + Q_{zz} + Q_q$$
(Here equation 1)

(Huang et al., 2010, J. Climate)

 $Q_{zz}$ : vertical diffusion  $Q_q$ : net heat flux

Heat budget analysis

Qzz is the leading factor for ocean temperature difference Qq has negative effect on upper ocean temperature

#### 6-mon-lead





- I. Short-term climate prediction system FIO-ESM exhibits high SST prediction skills over most of the North Pacific for two seasons in advance, and remains skillful at long lead times at mid-latitudes.
- II. Reliable prediction of SST can transfer fairly well to the prediction of precipitation, contributing to high precipitation skills at mid-latitudes.
- III. Surface wave can reduce warm bias of predicted SSTA, especially in mid latitudes of Northwest Pacific.

# Thank you for your attention