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Global climate changes and response of organisms
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Distribution range of marine taxa is changing under climate changes

Leading-edge expansion

Colonization
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What will happen if mteracted taxa shifts at different rate?

Tropical herbivorous fishes are expanding into temperate zone —> overgrazing:
“Tropicalization” brought by boundary currents (Vergés et al. 2014 Proc R Soc B)
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Coral expansion into temperate macroalgal communities

Corals: spatial competition with macroalgae

Kelps

Kelp - fucoid dominant

Community shift from
macroalgae-to-corals dominance
Distribution range shifts in
interacted habitat forming taxon
—> ecosystem-wide implications

, _ (biodiversity, ecosystem function,
Corals, herbivorous fishes:
ocean resources)

shift faster .




Coral conservation at the expense of macroalgae?

Global changes in corals

NOAA Coral Reef Watch 5 km Maximum Satellite Coral Bleaching Alert Area
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Tropicalized temperate zone can have conservation potential for corals

(Yamano et al. 2011; Beger et al. 2014 Div. Dist.)

at the expense of macroalgae under climate warming



This study shows ocean current transport and impacts of

herbivorous fishes and corals enhance community shift under
climate warming

1. Reconstructing overall patterns of distribution range shifts in
macroalgae, corals and impacts of herbivorous fishes in Japan

—> compiling historical observation records from various literature
sources (presence / absence)

2. Modeling relative importance of temperature warming and

current transport in community shifts from macroalgae-to-
corals

—> using “climate velocity” informed with ocean current transport

3. Estimating relative importance of herbivorous impact

(indirect) and coral colonization (direct) as the process of the
community shift

—> using a hierarchical Bayesian inference via MCMC



Unique advantages of Japanese coastal ecosystems
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1. Rapid warming by boundary current

—> |arge potential for tropcalization

2. Japanese archipelago stretches across 3,000
km from tropical to subarctic zone

—> including many range edges of species
distribution

3. Two warm currents encircling Japan provide
various directional transports for marine
organisms

—> ideal condition to disentangle effects of
warming & current transport

4. Many distribution records on macroalgae
and corals are available since early 20t

century



Expectation in range shift process
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Compiling historical records —> Reconstructing range shifts

Presence / absence of

86 species kelps & fucoids
Kumagai et al. (2016) Ecol. Res. (Data paper)

439 literature sources mainly 1950s—-2010s
- Kelps: 7 species

* Fucoids (Sargassum): 23 species

= Corals: 12 species

= Herbivorous fishes: 3 species (overgrazing)

Range shifts of corals (Yamano et al. 2011 + this study)
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Examples of identified range shifts (7/45 species)
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Summary of identified range shifts
Leading edge expansion

Tralllng edge contractlon
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Modeling range shift using a process-based model

Climate velocity trajectory model
(Burrows et al. 2011 Nature)

e.g. 20°Cisotherm (range edge in
2000s), the same temperature
at the past edge)

Finding least-cost point
on the isotherm line to
colonize

L4
L
.....
llllllllllllll

20°C (range edge in 1970s)

Taking minimum cost path

val

Circuit theory
(McRae et al. 2006 Mol. Ecol.)

Climate velocity = length of least-cost path / years
Small resistance (large conductance): shifts following current
Large resistance (small conductance): shifts against current

Extending coastal version of Burrows’s model to represent not only
climate warming also transport by ocean current (directional transport

with current velocity)

Current conductance
=1/ current speed

13



Modeling range shift using a process-based model

Climate model Current model

Isotherm

'Past edge

.

Relative mean conductance (1 / resistance)

; Predicted shift
== Observed shift =*=> Climate velocity)

We expected the model
including current transport
explain range shift from
past to present edge better
than climate only model

}

Relative importance of
current transport w was
estimated using a
Bayesian inference

Conductanceypiimums,g = (1 — w) Conductanceemperature s + W Conductance rent

S: species; : g: taxa group (kelp, fucoids, corals, fishes);

using one of 4-levels temperature indices (min — mean for expansions, max — mean for contractions)
using current data of different season (macroalgae: throughout; corals, fishes: early summer)
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Map of explanatory variable (climate velocity)
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Analyzing effects of warming and current transport

Leading-edge expansion

A Bayesian inference of relationship between
observed and predicted shift rates

Observed shift,™ ay ) + S, Climate velocity;
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Predicted potential probability of community shift & driving processes

a Bayesian inference on predicted shift rates against climate velocity
(MCMC samples of target processes/total)

Community shift Processes of macroalgae-coral shift

from macralgae to corals  direct process (competition) indirect process (herbivory)

Condition: (total of all shift processes)  corals > fishes | algal contract  corals < fishes | algal contract
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Macroalgae SST model SST & Water model Full variable model

Temperate species
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® Temperate sp.: Decrease > Increase; Southern sp.: Decrease = Increase 19




SST model SST & Water model Full variable model
Corals

Temperate Tropical
species species

SST Water Full SST Water  Full
®SST model, SST & Water model overestimated habitable area and habitat changes
@®Temperate sp.: Decrease = Increase; Tropical sp.: Decrease << Increase 20




Adaptation strategies in conserving both of macroalgae and corals

Proactive conservation strategies:

* Assisted migration/evolution

 Management of herbivorous fishes (should be used
as seafoods)

AWPEOMICHL

* Adaptation to changed ecosystem services AT N
BTIADBH58813
FNLSRHETE >
Temperate _
Expansion
macroalgae
N2
corals, barren
Overfishing in tropical Tropical
—> Increase of algae
& decrease of corals corals
Bellwood et al. (2004) Nature J e s
macroalgae Overfishing‘ E.

21



Adaptation gap between community shifts and coastal uses

Ongoing field-based study for ecological processes and coastal uses

. poo. ® Community shift from
Diving fighery, macroalgae to corals within
90 km of range
e et ® Macroalgae — diving fishery
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Take home messages

We described overall patterns of distribution range shifts in
macroalgae, corals and impacts of herbivorous fishes in Japan

We showed how current transport is important to explain
community shifts from macroalgae-to-corals

We estimated potential probability of the community shift
and the probability might increase in near-future

Herbivorous impact (indirect) were more probable process
than coral colonization (direct), but the importance of the
direct process might increase in near-future

Proactive managements might conserve both of macroalgae
and corals, but adaptation gap between community shift and
coastal use
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