Network Analysis of the Hawai'i-based Longline Fishery

Johanna L. K. Wren

NOAA – Pacific Islands Fisheries Science Center

Nicholas Ducharme-Barth

SPC – Ocean Fisheries Programme

Phoebe Woodworth-Jefcoats Donald Kobayashi Justin Hospital

Signa - Pacific Islands Fisheries Science Center

HAWAI'I DEEP-SET LONGLINE FISHERY

TARGETS BIGEYE TUNA BUT RETAINS AND SELLS OTHER SPECIES

 8^{TH} largest by value in the US

Footprint of 15 million KM^2

Spatial shift of the fishery towards the NORTH EAST

MANAGEMENT CHALLENGES

BIGEYE IS THE ONLY MANAGED SPECIES BEING FISHED AND ANNUAL QUOTAS ARE SET BY RFMOS

FISHERY EXPERIENCES CLOSURES DUE TO PROTECTED SPECIES INTERACTIONS

CAN UNDERSTANDING SPECIES ASSOCIATIONS AND NETWORKS IN FISHERIES DEPENDENT CATCH DATA INFORM EBFM?

MANAGEMENT CHALLENGES

BIGEYE IS THE ONLY MANAGED SPECIES BEING FISHED AND ANNUAL QUOTAS ARE SET BY RFMOS

FISHERY EXPERIENCES CLOSURES DUE TO PROTECTED SPECIES INTERACTIONS

CAN UNDERSTANDING SPECIES ASSOCIATIONS AND NETWORKS IN FISHERIES DEPENDENT CATCH DATA INFORM EBFM?

CO-OCCURRENCE AND NETWORK ANALYSIS

NETWORK ANALYSIS

PAIRWISE CO-OCCURRENCE

2018

LESS OFTEN

PAIRWISE CO-OCCURRENCE

2018

RANDOM CHANCE

LESS OFTEN

North East

NETWORK ANALYSIS

NETWORK ANALYSIS

CENTRALITY MEASURES

BETWEENNESS CENTRALITY

HOW MANY PATHS GO THROUGH NODE
INFLUENCE OF SPECIES LOSS ON FRAGMENTATION

CENTRALITY MEASURES

LOW DEGREE AND HIGH CLOSENESS MEANS THE SPECIES HAS A KEY ROLE BY INTERACTING WITH IMPORTANT SPECIES

CLOSENESS CENTRALITY

GLOBAL

HOW RAPIDLY INFLUENCES THE NETWORK

BETWEENNESS CENTRALITY

HOW MANY PATHS GO THROUGH NODE
INFLUENCE OF SPECIES LOSS ON FRAGMENTATION

LOW DEGREE AND HIGH CLOSENESS MEANS BIGEYE HAS A KEY ROLE BY INTERACTING WITH IMPORTANT SPECIES

CLOSENESS CENTRALITY - GLOBAL

Low degree and high betweenness means bigeye plays a key role in connecting species that would otherwise not be connected

DEGREE CENTRALITY

Best to compare centrality measures across networks

C_D Quantifies the immediate influence between nodes

$C^{\,}_{D}$ in the South west region is steady while NW and CW regions are increasing

 \implies More complex networks with time in NW and CW

HOW CAN NETWORKS INFORM EBFM?

INCLUDE ENVIRONMENTAL VARIABLES IN THE CO-OCCURRENCE ANALYSES

Better guide fishers where to fish to increase commercially valuable catch and decrease discards

Would love input from you all on the management application of co-occurrence and network analysis!

JOHANNA.WREN@NOAA.GOV | +1-808-384-3791

THANK YOU!