

NOAA FISHERIES

Northwest Fisheries Science Center A multi-model approach to better understanding the robustness of management of Pacific hake to environmental variability

Kristin Marshall¹, Nis Jacobsen^{1,2}, Isaac Kaplan¹, Kirstin Holsman³, and Grant Adams⁴,

¹Northwest Fisheries Science Center, ²National Research Council ³Alaska Fisheries Science Center, ⁴University of Washington

What is climate-robust fisheries management?

Resilient **OR** Responsive

How do we know if we've achieved climaterobust management?

- Specify goals, objectives AND measure performance
- Test robustness to a wide range of uncertainties

MSE as a collaborative, iterative process

Pacific Hake Fishery and Management

West Coast US Groundfish Landings

- International Pacific Whiting Treaty (2003)
- 74/26 percent of annual quota allocated to US/CA
- Harvest Control Rule F-SPR 40:10

Hake biomass relative to unfished

More fish, younger fish, in US than Canada

Malick et al. in review

Co-created (managers, industry, and scientists) goals for this iteration of the Hake MSE:

- Evaluate the performance of current hake management procedures under alternative hypotheses about current and future environmental conditions
- Better understand the effects of hake distribution and movement on both countries' ability to catch fish
- Better understand how fishing in each country affects the availability of fish to the other country in future years

Tools for evaluating climate-robust management for hake

	Operating Model			Estimation Model	Management model
	Spatially explicit	Environ. drivers	Trophic dynamics		
Prev. Hake MSE model				Х	Х

Generalized closed-loop simulation model for MSE

Climate change inspired movement scenarios

- Linearly increase the maximum movement rate over time
- Linearly decrease the proportion of fish returning to US to spawn
- Compare 3 scenarios no change to movement, moderate increase in movement, and dramatic increase in movement

Spawning biomass distribution in the future

Jacobsen et al. in prep

Coastwide performance metrics

1) No climate change effect

2) Moderate increase in movement

3) Dramatic increase in movement

Jacobsen et al. in prep

Conclusions thus far

- Current management procedure shows sensitivity to dramatic changes in movement rate (relatively robust to small changes)
- If model-assumed movement rates occurred, status quo management would lead to lower total catch, higher variation in catch, and lower spawning biomass

Tools for evaluating climate-robust management for hake

	Operating Model			Estimation Model	Managemen t model
	Spatially explicit	Environ. drivers	Trophic dynamics		
Prev. Hake MSE model				Х	Х
Current Hake MSE model	Х	Х		Х	Х

Ecosystem-Based Harvest Control Rules for Norwegian and US Ecosystems

10% 40% 100% Hake biomass relative to unfished

NOAA FISHERIES

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 16

Tools for evaluating climate-robust management for hake

	Operating Model			Estimation Model	Management model
	Spatially explicit	Environ. drivers	Trophic dynamics		
Previous MSE model				Х	Х
Current Hake MSE model	Х	Х		Х	Х
Atlantis ecosystem model	Х	Х	Х	In progress	Х

CEATTLE Multi-species model

Climate-Enhanced, Age-based model with Temperature-specific Trophic Linkages and Energetics Holsman et al.

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 19

CEATTLE-EBS: Options

https://github.com/grantdadams/Rceattle

Holsman et al.

Potential for CEATTLE-Hake as operating model

Tools for evaluating climate-robust management for hake

	Operating Model			Estimation Model	Management model
	Spatially explicit	Environ. drivers	Trophic dynamics		
Previous MSE model				Х	Х
Current Hake MSE model	Х	Х		Х	Х
Atlantis ecosystem model	Х	Х	Х	In progress	Х
CEATTLE- Hake		Х	Х	Х	Х

Is current management strategy for Pacific hake climate-ready?

- Testing robustness of current management to dramatic changes in environment is a first step
- Single-species spatial model suggests some resilience
- Testing robustness to a wider range of uncertainties is underway

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page

Thank you!

kristin.marshall@noaa.gov