Forecasting distribution shifts using oceanographic indices: the spatially varying effect of cold-pool extent in the Eastern Bering Sea

James Thorson

Thorson, J.T. (In press) Measuring the impact of oceanographic indices on species distribution shifts: The spatially varying effect of cold-pool extent in the eastern Bering Sea. *Limnology and Oceanography*. doi:10.1002/lno.11238.

Question

How to identify the impact of oceanographic indices (e.g., PDO) on fish distribution

Approach

Develop model with "spatially varying coefficients"

- Represents localized impact of regional oceanographic index on local density
- Estimates "map" of response to regional conditions

Three interpretations of a spatially-varying coefficient model:

- 1. Varying slope model
- 2. Regression of spatio-temporal variation $\varepsilon(s,t)$ on covariate X(s,t) for each location s
- 3. Map of "teleconnections" for nonlocal environmental conditions on local density

What is a spatially-varying coefficient model:

Conventional linear model

$$Y(s) = \beta + \gamma X(s) + \varepsilon(s)$$

– Model with spatially varying slope $\gamma(s)$ for covariate X(s) when predicting variable Y(s)

$$Y(s) = \beta + \gamma(s)X(s) + \varepsilon(s)$$

Extension to spatio-temporal models

$$Y(s,t) = \beta(t) + \gamma(s)X(s,t) + \varepsilon(s,t)$$

— ... which can be used for effect of regional conditions

$$Y(s,t) = \beta(t) + \gamma(s)X(t) + \varepsilon(s,t)$$

Where

- Y(s) is response and X(s) predictor at location s
- β is intercept and $\gamma(s)$ a slope term
- $\varepsilon(s)$ is residual error

Case study methods:

- Fit to multispecies survey
 - 17 groundfish and crabs
 - Eastern Bering Sea
- Compare four models
 - 1. No covariates ("None")
 - Local temperature effect ("Temp")
 - Spatially-varying cold pool effect ("Cold pool")
 - Both temperature and cold pool ("Both")

AIC for model fits (best fit in **Bold**)

	None	Temp	Cold Pool	Both
Gadus chalcogrammus	239.4	68.2	138.5	0.0
Gadus microcephalus	528.6	134.4	363.8	0.0
Hippoglossoides elassodon	175.5	6.2	142.6	0.0
Chionoecetes opilio	38.4	0.0	37.8	0.5
Hippoglossus stenolepis	260.9	87.5	178.4	0.0
Limanda aspera	79.8	6.4	67.4	0.0
Pleuronectes quadrituberculatus	70.3	37.4	20.7	0.0
Chionoecetes bairdi	0.8	6.5	0.0	5.8
Podothecus accipenserinus	212.3	7.4	157.5	0.0
Atheresthes stomias	475.4	34.6	365.8	0.0
Hyas coarctatus	31.5	11.0	17.3	0.0
Myoxocephalus polyacanthocephalus	85.5	19.5	47.3	0.0
Lycodes palearis	98.4	8.5	62.4	0.0
Myoxocephalus jaok	104.5	26.4	70.1	0.0
Hyas lyratus	0.0	4.3	2.2	6.7
Paralithodes camtschaticus	32.4	9.1	23.1	0.0
Lycodes brevipes	8.1	0.0	11.2	2.8

Case study results:

- Spatially varying effect of cold pool is different for each species
 - Distribution is not a simple function of temperature
- Most species show at least some variance associated with cold pool

Standard deviation of logdensity variation for a given process

Case study results:

- Temperature reduces spatio-temporal variance
 - 6-8% reduction on average
- Both temperature and cold-pool have larger reduction
 - 9-14% reduction on average

Residual variance explained

Case study results:

- Temperature reduces spatio-temporal variance
 - 6-8% reduction on average
- Both temperature and cold-pool have larger reduction
 - 9-14% reduction on average

Does spatially varying effect of cold pool improve forecasting?

Skill-test experiment

- Run with data through year T
- 2. Forecast center-ofgravity in year T+1, T+2, ...
- 3. Compare with later measurements

Published hindcast of distribution shifts for Alaska fishes

Pinsky et al. 2013 *Science* "Marine taxa track local climate velocity"

- Temperature and cold-pool improve forecasts of distribution fitting through 2015 and forecasting 2016/2018
 - Temperature helps with G. chalcogrammus
 - Cold pool helps with G. macrocephalus

Error in 3-year forecast

Case study results:

 Including both temperature and cold-pool reduce errors in northward center-of-gravity relative to a persistence forecast

Error in 3-year forecast,
Averaged across all species

Other potential uses

- 1. Spatially varying effect of calendar date
 - Useful to inter-calibrate samples collected in different months
- 2. Identify locations with largest changes over time
 - Estimate spatially-varying coefficient associated with year
- 3. Include regional effects during index standardization
 - Easy method to include non-local environmental conditions in models being used in stock assessment

Cecilia O'Leary, Jim Ianelli, Jim Thorson, Stan Kotwicki

Background

- Eastern Bering Sea surveyed 1982-2019
- Northern Bering Sea surveyed sporadically, and 2010, 2017-2019

Background

- Spatio-temporal model (VAST) used to combine eastern and northern Bering Sea for pollock assessment in 2018
- How to improve estimates in northern Bering Sea in unsampled years?

Effect of cold-pool extent on density for pollock

Effect of cold-pool extent on density for pollock

Acknowledgements

- Lorenzo Ciannelli
- Mike Litzow
- Lauren Rogers
- Jim lanelli
- Cecilia O'Leary
- Stan Kotwicki