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Why lateral mixing?

Frank Whitney, IOS




Parameterizing small scale?

® Does It matter?

o T 6 km 0.75 km
data assimilation can always

correct for bad flux
parameterizations...

® .for variables that we have
lots of data for

® can’t data assimilate hard
things like gases, nutrients,
biology

® dynamics might be wrong, and
data assimilation not fast
enough to correct (timing
spring bloom)

Capet et al 2008a




Steps to parameterize

~ A. phenomenology
_B.statisics |
2. Suggest Parameterlzatlon
3. Test versus data

4. Repeat...

Gulf Stream:

Line P:




Methodology

Moving Vessel Profiler

® Ship cruises 6-10 kts ® CTD sensor
® Casts to 200 m depth ® O2 or Fluorometer
® Spacing 700-1200 m




Line P spice and Kinetic energy

Eddy Kinetic Energy [cm”s/s/2]
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Maximenko et al 13
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Internal waves:
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Line P Lateral stirring:
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Line P Lateral stirring: Spice

Spice: T anomaly along isopycnal

negative spice positivig spice positive spice
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Line P Lateral stirring: lateral displacement statistics

Submesoscale high-pass




Line P Lateral stirring: lateral displacement statistics

Surface quasi-geostrophy: s Vorticity input

o Fronts

after Callies and Ferrari , 2013
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Line P Lateral stirring: lateral displacement statistics

Surface quasi-geostrophy:
Passive tracer:

Front
10° 10~ 10~ 10°
k [cpkm] kx [cpkm]

Opposite depth trend!




Line P Lateral stirring: lateral displacement statistics
Spice derivative PDFs

Line P; X>-550 km; onshore Line P; X<-=550 km; offshore
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High kurtosis (tails) means data more like fronts
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Line P Lateral stirring: Velocity statistics

MSc: Manman Wang, 2016

Surface quasi-geostrophy:

Front

ADCP data along Line P: Feb and June cruises 3 years




Line P Lateral stirring: Velocity statistics

MSc: Manman Wang, 2016

Surface quasi-geostrophy:

Front




Line P

Surface quasi-geostrophy:

Front

Lateral stirring: Velocity statistics
MSc: Manman Wang, 2016
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NEMO data (a few years ago) 1/32nd degree



|_| ne P Lateral Stirring: Velocity statisticS  vsc: Manman Wang, 2016

February: Vortex June: Vortex Model: Vortex

L—5/3 L—5/3 f—5/3

Surface quasi-geostrophy:

February: IWs June: IWs Model: IWs

Front

Decompose motions: IWs + Vortex flows (Buhler et al 14)

Klvmak: 20 meetine




Line P

Summary

® Tracer:

® |Lateral stirring on scales of +/-
200-km

® Two different regimes - near shore
and offshore.

® | ess small scale variance than
Surface Quasi-geostrophy

® Opposite depth dependence

® Kinetic energy:
® Internal waves
® |nertial subrange at all depths

® Models:
® don’t capture internal waves

® more consistent with QG theory:
Similar to ACC and Gulf Stream

Implications

QG/SQG theories not
directly applicable

Mid-depth vorticity source?
Time history matters?



Plans

® Submesoscale sampling important to
characterize lateral stirring and to test
models.

® Continue work from ships:

® combine ADCP and MVP (better
KE decomposition, APE estimates,
and more spice statistics)

® repeat different seasons (Line P
regular cruises)

Moving Vessel Profiler
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® gliders for lateral variability all
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® moorings for temporal anchor

®* multiple lines for correlation
statistics, seeing signals propagate

C-PROOF (T.Ross, S. Waterman, et al)
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Why lateral mixing?

Cyanobacteria
Baltic Sea

NASA, Earth Observatory




Why lateral mixing?

Cyanobacteria
Baltic Sea

Observatory




Why lateral mixing?

Cyanobacteria
Baltic Sea

1/4 degree
model (28 km)
“Eddy permitting”

NASA, Earth Observatory




Why Iateral m |X| N g’? 1/32 degree model: Eddy resolving

Cyanobacteria
Baltic Sea

NASA, Earth Observatory




Why Iatera.l m|X|ng? 1/32 degree model

Cyanobacteria
Baltic Sea

NASA, Earth Observatory
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