

MOTIVATION

Mesoscale (10-100km) and submesoscale (0.1 to 10 km) regulate tracer distributions

The vertical velocity of submesoscale can be as large as 100 m/d, affecting greatly vertical transport of tracers

GOAL

Quantify submesoscale role in vertical fluxes across the mixed layer across seasons

Levy et al., 2018

DOMAIN

Bathymetry of the Gulf of Mexico, black curve highlights the region where passive Lagrangian particles are released. Integrations cover 2015 and 2016

- ✓ The domain is 98-82W, 24-31N; 1km & 5km resolution
- ✓ Color shading shows the bathymetry of the Gulf of Mexico
- ✓ 21874 tracers are released for each case

- ✓ HYCOM Gulf of Mexico 1/25° (GOMl0.04) as boundary conditions
- ✓ ERA-Interim 6-hourly reanalysis for momentum and heat fluxes
- ✓ Daily fresh water discharge from the United State Geological Survey for river discharge (USGS, http://waterdata.usgs.gov/nwis/rt).

Mixed Layer Depth

Salinity (top panel) and mixed layer depth (bottom panel)

CURL and W at 5m and 100m

25°N 25°N -0.5 30' 24°N_{30'} 93°W 30' 92°W 30' 91°W 24°N_{30'} 93°W 30' 92°W 30' 91°W 24°N_{30'} 93°W 30' 92°W 30' 91°W 27°N 27°N 0.5 26°N -0.5 30' 25°N_{30'} 90°W 30' 89°W 30' 88°W 25°N_{30'} 90°W 30' 89°W 30' 88°W 25°N 30' 90°W 30' 89°W 30' 88°W

5m vertical velocity

26°N

0.5

30' 100m relative vorticity

26°N

Surface vorticity / f

5m vorticity and 5m&100m w + w PDF

5m vertical velocity

0.5

26°1

PARTICLES

Near-surface case

- ✓ Near-surface cases are tracers released at 5m
- ✓ Below-mixed layer cases are tracers released below the mixed layer, i.e., 100m in Feb, 20m in Aug, 50m in May and Nov

Below-mixed layer case for 1km (a, b) and 5km (c, d) winter and summer

DISPERSION

time (days)

TRACER CONCENTRATION

IN THE LOOP EDDY AND IN THE SUBMESOSCALE SOUP

1KM CASE

KERNEL DENSITY DISTRIBUTION

KDE = non-parametric way to estimate the PDF of a given variable. KDE is a way to find the PDF for a given dataset.

- ✓ Downwelling: tracers released at 5m found below 100m on day 10
- ✓ Upwelling: releases at 100m, found above 20m on day 10

Two-sample Kolmogorov-Smirnov test: different at 90% confidence level

CONCLUSIONS

- ✓ Largest vertical flux occur in winter; vertical exchange is least in summer when the mixed layer depth is less than 20 m deep (but comparable behavior)
- ✓ Submesoscale motions act to transport tracers vertically on scales relevant to the ecosystem and primary productivity. Important also for carbon and oxygen drawdown
- ✓ In winter active downwelling processes across the MLD are associated preferentially with submesoscale-soup regions and mesoscale structures (due to submesoscale instabilities inside the mesoscale eddies)
- ✓ Upwellings into the MLD is more uniformly distributed among intense submesoscale regions.

Thank you!