The importance of environmental exposure history in forecasting Dungeness crab megalopae occurrence using J-SCOPE, a high-resolution model for the US Pacific Northwest

Emily L. Norton^{1*}, Samantha Siedlecki², Isaac C. Kaplan³, Albert J. Hermann^{1,4}, Jennifer L. Fisher⁵, Cheryl A. Morgan⁵, Suzanna Officer⁶, Casey Saenger¹, Simone R. Alin⁴, Jan Newton⁷, Nina Bednaršek⁸, and Richard A. Feely⁴

PICES Annual Meeting October 22, 2019 Victoria, BC

J-SCOPE

Dungeness Crab Fishery: Valuable but Variable

Historical Catch in Oregon

I-SCOPE

- One of the most valuable fisheries in the Pacific Northwest
- Interannual fluctuations
 - Driven by environmental variability
- Co-managed by State and Tribes
- \rightarrow Managers are interested in

forecasting tools

Megalopae Abundance Correlated with Adult Crab Fishery 4 Years Later

Dungeness Crab Life Cycle: Benthic and Pelagic Stages

Exposure History is Important for Some Pelagic Organisms: Pteropod Survival

- > Particles initialized at sampling locations with vertical migration behavior
- Dispersal simulations run forward and backward for 30 days to estimate undersaturation days

Photo: R. Hopcroft

Fig. 3 in Bednaršek et al., 2017. Sci. Rep. 7, 4526

Project Overview

Hypothesis:

Including environmental exposure history will improve our ability to predict megalopae occurrence and habitat compared to using only cooccurring environmental conditions (*'in situ'*).

GLM = Generalized Linear Model

Develop

Dungeness Megalopae Occurrence Data

- 13 surveys from nine years
 - 2009-2016: develop GLMs
 - 2017: test GLM performance
- 37 sampling locations
- May + June surveys
- Oblique bongo tows 0-30m
- Dungeness megalopae identified and counted

Thanks to C. Morgan for providing data; sampling conducted by Bonneville Power Administration and Northwest Fisheries Science Center (NOAA)

J-SCOPE (JISAO's Seasonal Coastal Ocean Prediction of the Ecosystem) I-SCOPE Forecasts Seasonal Coastal Marine Conditions for PNW

Currently forecasting:

•T, S, O, NO₃, Chl a, pH, Ω

•Sardine Habitat (Kaplan et al., 2016) • in prep: OA specific indices for adult crab, shellfish, pteropods; and

hake habitat (Malick et al., in prep)

- NOAA's Climate Forecast System (CFS) global coupled air/sea/land model – used for boundary and atm forcing of ROMS-based regional model with biogeochemistry (Cascadia domain, ~1.5 km res)
- Empirically-derived relationships applied to modeled fields to predict additional quantities (e.g. pH and fish)

Anomaly Correlation Coefficient for seasonal forecast vs. hindcast

Next talk: Skill and uncertainty of environmentally **Check out our websit** driven forecasts of Pacific hake distribution

http://www.nanoos.org/products/j-scope/home.php

Siedlecki et al., 2016.

Jevelop in situ *model*

J-SCOPE

"in situ" Variable Extractions

- From J-SCOPE at times and locations concurrent with megalopae sampling (37 stations, 2009-2016)
- Averaged over sampling depth (0-30m depth)

Estimating exposure history is more complicated...

Exposure History: Particle Dispersal Tracked Backward for 30 Days with LTRANSv2b¹

EH models

J-SCOP

Develop

 Advection and environmental conditions from J-SCOPE

¹North et al., 2008; 2011; Schlag and North, 2012

Exposure History: Particle Dispersal Tracked Backward for 30 Days with LTRANSv2b¹

EH models

Develop

Environmental Conditions Extracted Along Particle Trajectories

EH models

Develop

Calculated Two Types of Exposure Histories Variables

Norton et al., 2019 (submitted, Front. Mar. Sci.)

EH models

Develop

Exposure History Models Show Better Fit and Performance Than *in situ M*odel

Relative Model Fit (0 is best)									
Experiment	Predictor Variables (bold p<0.05)	ΔAIC	$\begin{array}{c c} \text{in-sample} & \text{Model Performance} \\ \text{AUC} & (0 \rightarrow 1 \text{ higher is better}) \end{array}$						
in situ	-N	11.8	0.602						
EH-P1	+S, +O	0.0	0.658	Worst model fit and performance					
EH-P30	+Ρ, - SI Ω ar	1.9	0.625						
EH-DVM30	+0	4.7	0.644	4 EH models have good fit and					
EH-DVM60	+S, +O	5.3	0.650	performance					
EH-S1	-T, - N, - SI Ωca	7.9	0.645						
→Assemble " biological ensemble "									
Predictor(s) in GLM with									
direction (-/+) of correlation to									
megalonae occurrence									

I-SCOF

Biological Ensemble Skillfully Forecasts Megalopae Occurrence

- Biological ensemble represents multiple behaviors
- 94% agreement with 2017 megalopae survey
- Predicts habitat on outershelf and northern areas

Conclusions

- Prediction of pelagic habitat for Dungeness megalopae is possible with a combination of tools: ocean conditions model, particle tracking, statistical modeling
- Models that include exposure history outperform those that solely rely on *in situ* conditions
- Simulated behavior affects depth habitat and ultimately drives environmental exposure
- Best prediction was the result of a biological ensemble that includes multiple behaviors

Acknowledgements

Funding for this project provided by NOAA Ocean Acidification Program. Funding for J-SCOPE provided by NOAA MAPP and NOAA OAP. Thanks to Bonneville Power Administration, NOAA NWFSC, and F/V Frosti crew for sample collection.

NOAA

For more information, check out our website: http://www.nanoos.org/products/j-scope/home.php

J-SCOPE

Photo Credit: R. Norton

Ocean Condition Observations for J-SCOPE Skill Assessment

- Surface, seafloor, and water column measurements
- Moorings and cruises
- 2009-2017

Select Environmental Variables to Consider for Occurrence Model

Criterion 1: Reported as important for megalopae in the literature

1b: Critical thresholds exist to calculate severity indices

Criterion 2: Modeled by J-SCOPE (or could be derived from modeled variables)

Motivation: Variable skill will influence performance of occurrence models \rightarrow investigate patterns of J-SCOPE skill

• Paired modeled and observed variables within specific depth habitats and seasonal windows: 1) Pearson's Correlation Coefficient (r>0.5)

2) Normalized Root Mean Square Error (-1<NRMSE<1)

Experiment	Depth Habitat (m)	Temperature (°C)	Salinity	Oxygen (mmol m ⁻³)	Nitrate (mmol m ⁻³)	Phytoplankton (mmol m ⁻³)	pН	Ω_{ar}	Ω_{ca}
EH-P1	40-50	0.87	0.66	0.71	0.75	0.04	0.72	0.73	0.77
		-0.59	-0.85	-0.94	2.63	-1.14	-0.90	-0.84	-0.77
		(2403)	(2403)	(2348)	(33)	(2353)	(2165)	(2165)	(2165)
EH-P30	55-70	0.89	0.61	0.54	N/A	0.09	0.58	0.56	0.72
		-0.51	-0.92	-1.25	11/21	-1.57	-1.13	-1.13	-0.88
		(2729)	(2729)	(2665)	(0)	(2689)	(2409)	(2409)	(2409)
FH-DVM30/	0-30	0.88	0.76	0.71	0.61	0.10	0.71	0.75	0.78
in situ		0.58	-0.66	0.79	1.01	1.56	-0.77	-0.70	0.67
		(8391)	(8391)	(8189)	(860)	(8105)	(7516)	(7516)	(7516)
EH-DVM60	0-60	0.91	0.79	0.75	0.62	0.09	0.75	0.77	0.80
		0.51	-0.63	0.82	1.19	-1.30	0.78	0.73	0.68
		(14832)	(14832)	(14482)	(906)	(14398)	(13287)	(13287)	(13287)
EH-81	0-5	0.82	0.74	0.50	0.62	0.50	0.56	0.72	0.76
		0.76	-0.70	-0.92	-0.84	2.71	-0.88	-0.72	-0.69
		(1335)	(1335)	(1302)	(625)	(1255)	(1195)	(1195)	(1195)

→ Significant skill for most variables; skill increases subsurface

Results: Particle tracking simulations Passive Dispersal DVM Behavior

Behavior and Initialization Depth Affect Dispersal Trajectory

EH model

Develop

Environmental Exposure Influenced by Depth Habitat

1. Averages: **Depth habitat** drives exposure patterns – shallow (EH-S1) and deep (EH-P30) habitats are most divergent

2. Severity Indices: Severe conditions experienced in deep habitats (EH-P30, DVM60)

Develop

Develop GLMs Using *in situ* and Exposure History Variables

Recall Aim: Model megalopae occurrence using in situ vs. exposure history variables

• Binomial distribution ('present' or 'absent') requires logit link function

Probability of Presence =
$$log\left(\frac{\mu}{1-\mu}\right)$$

where

$$\mu = \frac{e^{X_b}}{1 + e^{X_b}}$$

X_b is linear combinations of predictor variables

- Considered all variables as potential predictors
 - Selected best combination of variables based on lowest AIC score

Biological ensemble – 2017 performance

Ever view ant	Fountion (hold n < 0.05)	2017		
Experiment	Equation (bold p<0.05)	AUC		
EH-P1	-11.0 + 0.248* S + 0.0111* O	0.914		
EH-DVM30	-3.01 + 0.109* 0	0.814		
EH-DVM60	-6.42 + 0.132* \$ + 0.00988* 0	0.936		
EH-S1	1.77 - 0.157*T - 0.0994* N - 79.5*(SI Ωca)	0.757		
Biological Ensemble:				

11:50a – 12:10p: 15 min talk + 5 min Q