Role of river inflows from the Kamchatka Peninsula in the Okhotsk Sea

Toru Miyama¹
Humio Mitsudera²

- ¹ Application Laboratory, JAMSTEC
- ² Institute of Low Temperature Science, Hokkaido University

Okhotsk Sea Sea Ice

60°N 45°N 140°E 145°E 150°E 135°E 155°E 160°E 165°E

Sea Surface Salinity

Feb 2011 NOAA OISST July Climatology
World Ocean Atlas 2013

Ocean Color images from Sentinel2

NASA: Image of the day Kamchatka Surrounded by Blooms (May 23, 2013)

https://earthobservatory.nasa.gov/images/81258/kamchatka-surrounded-by-blooms

This study

- Simulate the northern Okhotsk Sea
- Compare the run with and without river inflows from Kamchatka Peninsula
- Clarify the roles of the river inflows

Forcings

- Atmospheric forcings
 - JRA55-do (Tsujino et al. 2018)
 - New standard forcing for Ocean Model Intercomparison Project
 - TL319 (0.5625°)
 - 3hourly
- Lateral boundary condition
 - Sea level
 - Observed 6 tidal components from TPXO9
 - + daily sea level from FRA-JCOPE2 reanalysis
 (c.f. Nakanowatari and Ohshima 2014, Arrested topographic wave)
 - Temperature, salinity, velocity
 - Restored to FRA-JCOPE2 reanalysis

Data for River inflows JRA55-do (from Suzuki et al. 2017)

- Based on model calculation
 - River runoff field, including runoff from ice-sheet melting
 - CaMa-Flood global river routing model and adjusted runoff from the land component of JRA-55.
- 0.25 x 0.25 horizontal resolution
 - Converted to river inflow at the closest costal point
- Daily time resolution

Temperature and salinity

- Salinity: zero
- Temperature:

Surface air temperature (more than 0)

(Same treatment as JAMSTEC JCOPE-T)

River mouths for the FVCOM

JRA55-do 0.25x0.25 deg

River mouths

Compare the run with and without river inflows

River inflow volumes

Spin up

- Integration
 - Repeated integration for 10 years
 - forced by the data from June 1, 2010 to June 1, 2011
 - Results in 10th year are presented.

Sea Surface Salinity

Animation From 0 UTC, April 10 to 0 UTC, May 10, 2011 (every 1 hour)

Sea Surface Salinity

With all rivers — Without the eastern (Kamchatka) rivers

Sea Surface Salinity

With the rivers – Without the rivers

August

Eastern rivers (Kamchatka)

Eastern rivers (Amur)

Northern rivers

T-S diagram

With all rivers
Without eastern
(Kamchatka) rivers

Difference on $26.7-27.2 \sigma_{\theta}$

With minus Without River

Japan Coastal Ocean Predictability Experiment

Salinity on density surface (Mar)

All Rivers included

Without eastern (Kamchatka) rivers

150°E

-34.0

- 33.8

-33.6

-33.4

-33.2

165°E

26.7 -26.9 σ_{θ}

26.9 -27.2 σ_{θ}

135°E

Salinity on density surface (Mar)

All Rivers included

Without central rivers

- 34.0

- 33.8

-33.6

-33.4

-33.2

165°E

26.7 -27.2 σ_{θ}

26.7
-27.2 σ_{θ}

Salinity on density surface (Mar)

All Rivers included

Without western (Amur) rivers

26.7 -27.2 σ_{θ}

26.7 -27.2 σ_θ

Summary

- As a part of the project in the Okhotsk Sea, the northern Okhotsk Sea was simulated with FVCOM.
- The comparison with and without the river inflows shows that the inflows lower the salinity more than 1 unit at a maximum. The effect of river inflows from Kamchatka Peninsula also spreads toward the western Okhotsk Sea.
- Freshening (warming on the same density) reaches deeper levels through the dense shelf water formation.

