Resolving surface seawater CO₂ system variability and estimating change along the Inside Passage with observations from an Alaskan ferry

Wiley Evans^{1,*}, Geoffrey T. Lebon^{2,3}, Christen D. Harrington⁴, Yui Takashita⁵, Allison Bidlack⁶
 ¹Hakai Institute, Heriot Bay, British Columbia, Canada; *wiley.evans@hakai.org
 ²Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
 ³Joint Institute for Study of the Ocean and Atmosphere, University of Washington, Seattle, Washington, USA
 ⁴Alaska Department of Transportation, Ketchikan, Alaska, USA
 ⁵Montery Bay Aquarium Research Institute, Moss Landing, California, USA
 ⁶Alaska Coastal Rainforest Center, University of Alaska Southeast, Juneau, Alaska, USA

COLUMBIA

Ocean acidification risk assessment for Alaska's fishery sector

J.T. Mathis ^{a,b,s,,J}, S.R. Cooley ^{c,1,2}, N. Lucey ^d, S. Colt ^e, J. Ekstrom ^f, T. Hurst ^{g,b}, C. Hauri ⁱ, W. Evans ^{a,b}, J.N. Cross ^{a,b}, R.A. Feely ^a

Alaska Marine Highway Ferry *Columbia* CO₂ system in 2017

22

COLUMBIA

Addition of MBARI BioGeoChemical SUrface MOnitoring (BGC-SUMO) system in 2019

The longest instrumented ferry run in North America ~1300 km 1-way

Seasonal/Inter-annual patterns in SST & Salinity

Seasonal/Inter-annual patterns in O₂ & pCO₂

Discrete pCO_2/TCO_2 sample validation

Alkalinity poorly estimated in low S water

BGC-SUMO pH comparison

Points to over-estimate in alkalinity in low S water Measured pH lower than estimated Most evident in summer in Lynn Canal Variability in derived CO₂ parameters with differences in severity and timing

Can we use this information to optimize our observing system?

Without long datasets, must rely on estimating anthropogenic CO₂ to evaluate change

Water mass age, anthro-CO₂, & impacts on pH / Ω_{arag}

Closing Remarks

- Resolved O₂/pCO₂ variability for Inside
 Passage
- Need to improve TA estimation in regions of glacial melt
- Most severe pH/Ω_{arag} do not necessarily occur at the same time / location
- Strategize OA observing based on observed pCO₂ variability
- Seasonally dynamic anthro-CO₂ with differential between change in pH and Ω_{arag}

Data available: https://dx.doi.org/10.21966/zxzr-e472 Black = M/V *Columbia* track Y1 from Oct 2017 - Oct 2018* Y2 from Mar 2019 - Oct 2019

M/V *Columbia* will be laid up beginning Oct 2019

*only Y1 presented

Kodiak

ΔK

Red = M/V *Kennicott* track as potential alternative platform starting in 2020

Glaciers; data from USGS

Pacific Ocean

M B A R I

Bellingham

